
The Bitcoin Lightning Network 
DRAFT Version 0.5

Joseph Poon <joseph@lightning.network>, Thaddeus Dryja <rx@awsomnet.org>

Abstract. The bitcoin protocol[1] can encompass the global financial transaction volume 
in all electronic payment systems today, without a single custodial 3rd party holding 
funds or requiring participants to have any more than a computer on a home broadband 
connection. A decentralized system is proposed whereby transactions are sent over a 
network of micropayment channels (a.k.a. payment channels or transaction channels) 
whose transfer of value occurs off-blockchain. If Bitcoin transactions can be signed with 
a new sighash type which addresses malleability, these transfers may occur between 
untrusted parties along the transfer route by contracts which are enforceable via broadcast 
over the bitcoin blockchain in the event of uncooperative or hostile participants, through 
a series of decrementing timelocks.

1. The Bitcoin Blockchain Scalability Problem
The blockchain as a payment platform, by itself, cannot cover the world’s commerce anytime 
in the near future. If each node in the bitcoin network must know about every single 
transaction that occurs globally, that may create a significant drag on the ability for the 
network to encompass all global financial transactions.

The payment network Visa is believed to do 45,000 peak transactions per second on its 
network during holidays, and hundreds of millions average per day. Currently, Bitcoin 
supports around 7 transactions per second with a 1 megabyte block limit. If we use an 
average of 300 bytes per bitcoin transaction and assume unlimited block sizes, an equivalent 
capacity to peak Visa transaction volume of 45,000/tps would be nearly 8 gigabytes per 
Bitcoin block, every ten minutes on average. Continuously, that would be over 400 petabytes 
per year. Clearly, that isn’t feasible today. Today’s personal computers cannot operate with 
that kind of bandwidth and storage. If Bitcoin is to replace all electronic payments in the
future, not just Visa, as currently implemented it can only achieve a small portion of that, or 
at best, scale with extreme centralization of a few capital-intensive Bitcoin nodes and miners.

While it is possible that Moore’s Law will continue indefinitely, and the computational 
capacity for nodes to cost-effectively compute multi-gigabyte blocks may exist in the future, 
it is not a certainty. Relying on optimistic extrapolations of Moore's law isn't a plan, but a 
hope that one won't be needed.

To achieve much higher than 45,000 transactions per second using Bitcoin requires 
conducting transactions off the Bitcoin blockchain itself. It would be even better if the bitcoin 
network supported a near-unlimited number of transactions per second with extremely low 
fees for micropayments. Many micropayments can be sent sequentially between two parties 
to enable any size of payments.

“If a tree falls in the forest and no one is around to hear it, does it make a sound?”

Whether tree falling makes a sound questions the concept of relevant information affecting 
the wider universe, if nobody is around to hear the tree falling, then whether it made a sound 
or not is of no consequence. Similarly, in the blockchain, if only two participants care about



a transaction, it’s not necessary for all other nodes in the bitcoin network to know about that 
transaction. It is instead preferable to only have the bare minimum of information on the 
blockchain. It is desirable for two individuals to net out their relationship at a later date, 
rather than detailing every transaction on the blockchain. This can be achieved by using time 
locks as a component to global consensus. As a result, Bitcoin can scale to billions of 
transactions per day with the computational power available today on a modern desktop 
computer.

2. A Network of Micropayment Channels Can Solve 
Scalability
Currently, bitcoin denominated micropayments are implemented by offloading the 
transactions to a custodian, whereby users are trusting 3rd party custodians to hold coins, 
update user balances, and allow deposits and withdrawals. Trusting 3rd parties to hold all of 
one’s funds creates counterparty risk; the consequences of such risk have been well-
publicized.

Trusting 3rd parties to hold all of one’s funds creates counterparty risk and transaction costs. 
While currently many bitcoin services use this custodial model, it is possible to use native 
bitcoin transactions to scale to billions of users. We propose a system using bitcoin 
transaction scripting and micropayment channels, without custodial risk of theft. Sending 
many payments inside these micropayment channel enables one to send large amounts of 
funds to another party in a decentralized manner.

Micropayment channels[2][3] create a relationship between two parties to perpetually update 
balances, deferring the transaction broadcast to the blockchain in a single transaction netting 
out the total balance between those two parties. This permits the financial relationships 
between two parties to be trustlessly deferred to a later date, without risk of counterparty 
default. Micropayment channels use real bitcoin transactions, only electing to defer the 
broadcast to the blockchain in such a way whereby both parties can guarantee their current 
balance on the blockchain; this is not a trusted overlay network, payments in micropayment 
channels are real bitcoin communicated and exchanged off-chain.

However, micropayment channels only create a relationship between two parties. Requiring 
everyone to create channels with everyone else does little to solve the scalability problem. 
General Bitcoin scalability can be achieved using a large network of micropayment channels.

If we presume a large network of channels, and all Bitcoin users are participating on this 
graph by having at least one channel open on the Bitcoin blockchain, it is possible to create a 
near-infinite amount of transactions inside this network. The only transactions that are 
broadcast on the Bitcoin blockchain are channels closing due to uncooperative counterparties.

By encumbering the Bitcoin transaction outputs with a “hashlock” and “timelock”, the 
channel counterparty will be unable to outright steal funds and bitcoins can be exchanged 
without outright counterparty theft.

3. Hashlocked Bidirectional Micropayment Channels
Micropayment channels permit a simple deferral of a transaction state to be broadcast at a 
later time. The contracts are enforced by creating a responsibility for one party to broadcast 
transactions before or after certain dates. If the blockchain is a decentralized timestamping 
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system, it is possible to use clocks as a component of decentralized consensus to determine 
data validity[4]. By creating timeframes where certain states can be broadcast and later 
invalidated, it is possible to create complex contracts using bitcoin transaction scripts.

There has been prior work on Hub-and-Spoke Micropayment Channels[5][6][7][8]. Implementing 
our hub-and-spoke network requires the malleability soft-fork described in Appendix B. This 
would enable near-infinite scalability while mitigating risks of intermediate node default. The 
implementation in Appendix A describes a method without requiring a soft-fork and may be 
used on the Bitcoin blockchain today with some minimal risk.

By chaining together multiple micropayment channels, it is possible to create a network of 
transaction paths. Paths can be routed using a BGP-like system, or the sender may designate 
a particular path to the recipient. The output scripts are encumbered by a hash, which is 
generated by the recipient. By disclosing the preimage of that hash, the recipient’s 
counterparty will be able to pull funds along the route.

3.1. Hashed Timelock Contract (HTLC)
With a network of payment channels, a blockchain enforced contract must be constructed to 
prevent sender, recipient, and intermediaries from delaying or stealing funds.

An HTLC is opened by creating a transaction output which only the final recipient can 
redeem. The recipient first generates random data R, and hashes R using hash(R) to produce 
H. This information is provided directly from receiver to sender of funds, along with the 
recipient’s bitcoin address. The sender routes their payment to the receiver. When the 
recipient has received an updated transaction in a micropayment channel, the recipient may 
elect to redeem the transaction by disclosing the random data R, which will ultimately pull 
funds from the sender.

The purpose of a Hashed Timelock Conctact is to require a message, R, to be known and 
disclosed in order for the transaction to be broadcast on the blockchain before a certain date.

In effect, Alice and Bob agree to the following clearing and settlement contract:
• If Bob can produce to Alice an unknown 20-byte random input data R from a known 

H, within three days, then Alice will settle the contract by paying Bob 0.1 BTC.
• If three days have elapsed, then the above clause is null and void and the clearing 

process is invalidated, both parties must not attempt to settle and claim payment after 
three days.

• Either party may (and should) pay out according to the terms of this contract in any 
method of the participants choosing and close out this contract early so long as both 
participants in this contract agree.

• Violation of the above terms will incur a maximum penalty of the funds locked up in 
this contract, to be paid to the non-violating counterparty.

The contract is created using this output script:
OP_DEPTH 3 OP_EQUAL OP_IF OP_HASH160 <hash160(R)> OP_EQUALVERIFY 
OP_0 2 <AlicePubkey1> <BobPubkey1> 2 OP_CHECKMULTISIG OP_ELSE OP_0 
2 <AlicePubkey2> <BobPubkey2> 2 OP_CHECKMULTISIG OP_END

The output is encumbered by a hash if the parties’ first signature is provided, but not if both 
parties’ second signatures are provided. Two sets of keys from both participants are used to 
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enforce the ability to broadcast the spending transaction depending on whether R from hash
(R) is known.

In effect, the goal of this output is to create two paths for the output: Path 1, if hash(R) is 
produced within three days, and Path 2. The two paths are mutually exclusive as they are the 
same output. Enforcement of whether the second path can be broadcast is done via a 
locktimed transaction. It is therefore possible to create the defined clearing and settlement 
contract by generating spends from this output script first.

The first path is the Settlement Transaction (S) which has a 2-of-2 output. The Settlement 
Transaction is consumed by a Settlement Delivery Transaction (SD) which pays out to the 
recipient in the event the input R is produced within the agreed upon contractual date. The 
Settlement Delivery transaction has a longer locktime, e.g. 40 days. This extra step is 
necessary to invalidate the Settlement Transaction. Per our example, only Alice sends the 
signature for S and SD to Bob.

The second path is the Timeout Transaction (T), consuming the same txout as the Settlement 
Transaction (S). The Timeout Transaction has a 2-of-2 output and is consumed by the 
Timeout Refund (TR) with a refund back to the original party and cancels the clearing 
process. The extra timelocked step from a Timeout Transaction to a Timeout Refund 
Transaction is necessary to invalidate the Timeout Transaction. Per our example, only Bob 
sends the signature for T and TR to Alice.

By having this extra step for the TR and SD transaction, one is able to cancel the contract 
itself by creating another transaction with no locktime giving the other party the full payout 
spending from S or T. This enforces a future contract term of requiring the counterparty to 
never broadcast a deprecated HTLC.

Transfers below the minimum IsStandard outptut size can be made with two payment outputs 
in the HTLC (with one output going to each party), with the net difference between the two 
outputs being the actual payment. Transactions can theoretically be sent as small as one 
Satoshi, however it may be possible that the fees paid to the intermediary may be higher.

This transaction, and spends dependent upon this transaction, function as a credible contract 
backed by enforcible action. The social agreement is to act honestly between participants on 
the channel, however if one party is non-cooperative, this transaction may be broadcast on 
the bitcoin blockchain to enforce the contract without the need for the counterparty to 
cooperate. In effect, the terms of the contract are programmed into the transactions itself. 
Which transactions get broadcast are dependent upon time and information disclosure.

3.2. Creating the Channel
In order to participate in this payment network, one must create a micropayment channel with 
another participant on the network. A Funding Transaction is created by either one or both of 
the channel participants. The output for this Funding Transaction is a single 2-of-2 multisig 
address controlled by both participants in the channel, henceforth named Alice and Bob. Both 
participants do not exchange signatures for the Funding Transaction until they have created 
spends from this 2-of-2 output refunding the original amount back to its respective funders.

A SIGHASH_NORMALIZED transaction is used to spend from this 2-of-2 Funding 
Transaction output, as normalized TXIDs are necessary to spend from a transaction which the 
signatures are not yet exchanged. SIGHASH_NORMALIZED and SIGHASH_NOINPUT, 

4



implemented using a soft-fork ensures transactions can be spent from before it is signed by 
all parties, as transactions would need to be signed to get a transaction ID without new 
sighash flags. See Appendix B for more information and implementation.

Fig 1. Alice and Bob fund a transaction. CR1a, CR1b, C1a, and C1b signatures are shared as described, and F 
is exchanged and broadcast on the blockchain. Dashed lines denote a transaction which is not broadcast on the 
blockchain. Shaded-green/solid-line is a transaction which gets broadcast on the blockchain. In this paper, 
times such as 40 days are used for clarity, but it is preferable to use block height due to blockchain 
reorganization security.

All spends from the Funding Transaction output, termed Commitment Transactions, consist 
of two half-signed transactions: one which Alice signs and gives to Bob (C1b), and another 
which Bob signs and gives to Alice (C1a). These two Commitment Transactions spend from 
the same output, and have different contents; only one can be broadcast on the blockchain. 
Either party may broadcast the Commitment Transaction by signing their received version 
and including the counterparty’s signature.

The first two outputs from all Commitment Transactions contain a refund of the present 
balance between the counterparties. For new transactions, it should just be a refund to one or 
both participants, identical in amount to the Funding Transaction. The counterparty may 
immediately redeem the funds if the Funding Transaction, as well as the Commitment 
Transaction (which spends from the Funding Transaction) is included in the blockchain. The 
party which broadcast the transaction must wait until a pre-agreed time before they may 
redeem their transaction which is enforced by a 2-of-2 output -- for our examples, we will 
presume a 40-day locktime. This locktime is a 2-of-2 spend, a Commitment Close 
Transaction, from the Commitment Transaction. For instance, if Alice broadcasts the Funding 
Transaction and the Commitment Transaction, Bob will be able to receive a refund for 
whatever he put into the funding transaction using the Commitment Refund Transaction 
(CR1a), while Alice must wait 40 days before broadcasting her Commitment Close 
Transaction (CC1a) which includes an output to Alice. Bob does not have to wait because 
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Alice was the party who broadcast the Commitment Transaction, so Alice is attesting that 
Bob should receive at least a certain amount, which is automatically sent to Bob, whereas 
some timelocked proof is necessary to show Alice’s refund is correct.

When initially funding a channel, parties exchange their signatures for the Commitment 
Transaction which refunds both parties their respective contributions, and then the Funding 
Transaction signatures are exchanged. In the event the counterparty fails to exchange the 
Funding Transaction signatures after the Commitment Signatures are exchanged, one must 
double-spend their respective inputs to the Funding Transaction.

Note that either party may broadcast their version of the Commitment Transaction, and only 
one may be broadcast. Parties are only able to broadcast the version that they have received. 
When correctly broadcasting one’s version of the Commitment Transaction, one must wait 
until the agreed upon locktime before the funds are redeemable.

Outputs from each Commitment Transaction use a unique set of addresses. For example, Bob 
sets all his outputs from Commitment Transactions to use BobKeyB and this key is only for 
C1b, whereas Bob uses BobKeyA for C1a. Note that all spends from the Funding Transaction 
to use as the input for the Commitment Transaction still reuse the same key, as it is not 
possible to change a transaction that is included in the blockchain. This dual-key structure is 
necessary for future invalidation of transactions.

Once the funding transaction is committed to the blockchain, the channel is open for further 
transactions.

3.3. Transaction Clearing: Making a Payment in a Channel
To send funds from one party to another in the channel, one creates a Hashed Timelock 
Contract (HTLC), as described previously, to clear a payment off-chain.

The funds from the first two outputs of the most recent Commitment Transaction are 
deducted and a new pair of Commitment Transactions are created. New HTLC outputs 
created in the new pair of Commitment Transactions, whose output amount is the amount one 
wishes to send (including fees).
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Fig 2. Alice and Bob update their Commitment Transactions and exchange signatures, after the necessary 
signatures are shared for the transactions spending from the Commitment Transaction. Red/thin-dashed-lines 
imply a transaction which only gets broadcast when something goes wrong. Note that the Commitment 
Transaction uses the number 2 and the HTLC uses the number 1, as it is the first HTLC. While it may appear 
that this is too complicated and creates too many transactions, these transactions only get broadcast if the 
counterparty is uncooperative, in nearly every instance both parties net out their balances and do a single 
transaction spending from the Funding Transaction when they wish to close out the channel.

It is presumed that all HTLC spends, specifically, the Settlement Tx and the Timeout Tx are 
SIGHASH_NOINPUT, which can be spent from any transaction. Note that every HTLC 
output from a Commitment Transaction must use a unique pubkey and address. Reusing 
pubkeys will likely result in coin theft. It is possible to use this with 
SIGHASH_NORMALIZED, but it may require more signatures since every new 
Commitment Transaction must re-sign all pending HTLC spends and the transactions which 
spend from those HTLC spends.
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Note that each party exchanges four new sets of pubkeys/addresses for the new HTLCs (As 
there are two necessary for the HTLC output, see the HTLC section for AliceKey1 and 
AliceKey2), which are spent in S1a, SD1a, T1a, TR1a or S1b, SD1b, T1b, TR1b (depending 
upon which Commitment Transaction is broadcast). 

Additionally, two new sets of pubkeys/addresses are used for the two new Commitment 
Transactions, which get redeemed in the Commitment Refund Transactions.

In total six keys are created to make a new HTLC contract in this channel.

It is possible that new HTLCs will be appended in the future, while old ones are still in use 
for new Commitment Transactions. For this reason, each party uses creates new keys.

The Commitment Transactions will only be exchanged when all parties signed transactions 
spending their outputs. Presume Alice wishes to clear a payment to/through Bob. The steps to 
clear a payment are as follows:

1. Alice signs and sends Bob her signature for: CR2b, S1, SD1.
2. Bob signs and sends Alice his signature for: CR2a, T1, TR1, C2a. At this point, Alice 

is able to broadcast C2a or C1a.
3. Alice signs and sends Bob her signature for C2b. At this point Bob is able to 

broadcast C2b or C1b. Alice may broadcast C2a and the balances will be the same. 
She gives Bob her private key from the Commitment Close Transaction from C1a. 
By giving her private key for C1a, Alice repudiates transaction C1a, assuring Bob that 
she will not broadcast it.

4. Bob similarly gives Alice his private key for C1b. Both parties will only broadcast 
C2a or C2b. The transaction is now cleared. Bob is clear to take action to settle the 
HTLC.

This four-step clearing process ensures that neither party can steal the funds of the 
transaction. When Step 2 has completed, Alice is able to broadcast either the C1a or C2a 
series of transactions. Bob doesn’t care which one Alice broadcasts, since the balances will 
remain the same, presuming the hashlock is not redeemable. Alice then gives Bob sufficient 
data to broadcast either C1a or C2a, where Alice similarly doesn’t care which is used. They 
then invalidate C1a and C1b by exchanging the private keys to spend the Commitment Close 
Transactions.

If these four steps are completed, and Alice broadcasts C1a, Bob will have the private key to 
redeem CR1a for himself, as he has Alice’s C1a key and he has not shared his CR1a key -- he 
only shared his CR1b key. Since Alice’s version of CR1a has a locktime of 40 days, Bob can 
immediately broadcast his transaction taking all of Alice’s coins well before the 40 day 
locktime. Thus, Alice will not broadcast any previous Commitment Transactions, such as 
C1a, and correspondingly Bob will not broadcast C1b. If they did broadcast such a spend, 
their counterparty would take all the money in the channel. Both parties are motivated to 
delete their old copies of Commitment Transactions.

Also, note that only Alice can broadcast C1a, and only Bob can broadcast C1b -- this has not 
changed.

When one party wishes to append another HTLC, the same process occurs. All previous 
HTLCs outputs in the Commitment Transaction are kept in the new Commitment 
Transaction.
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3.4. HTLC Settlement
After an HTLC has been established, it may become desirable to settle the cleared 
transaction. If it is within the agreed time in the contract, the contract can be net settled by 
removing the HTLC and adding the balance to the output in the Commitment Transaction to 
be spent by the Commitment Refund or Commitment Close Transaction. The steps to do so 
are the same as adding an HTLC. A new Commitment Transaction superseding the old one is 
established via novation (contract/transaction replacement), except an HTLC is removed 
instead of added. 

Additionally, HTLC private keys are disclosed to the counterparty to enforce non-broadcast 
of the older Commitment Transactions in step 3 and 4. Alice discloses to Bob her C2a keys, 
and Bob discloses to Alice his C2b keys. That way if Alice broadcasts C2a, Bob is able to 
make any spends necessary to give himself all funds within the HTLC. Alice will also be able 
to take all funds from the HTLC if Bob broadcasts C2b or any older Commitment 
Transaction containing the HTLC. Alice does NOT broadcast her private key used in the 
counterparty’s half of the Commitment Transaction (e.g. C2b), similarly Bob does not do the 
same for Alice’s half.

As a result, when the HTLC gets settled in a new Commitment Transaction pair (C3a and 
C3b) with no HTLC output, and the balances get settled in CC3 and CR3, if C2a gets 
broadcast, Bob will be able to spend from the HTLC output in C2a. Bob will also be able to 
spend from S1a or T1a because the signed spends SD1 and TR1 are locked for 40 days. Since 
Bob can create a new spend from S1a or T1a to send the coins to himself, the SD1a and TR1a 
payout to Alice are effectively invalidated. Therefore, Alice will not be able to steal coins 
from an already settled HTLC by broadcasting old transactions.

Successful settlement is defined by the recipient being able to prove that they have R from 
hash(R) defined in the HTLC. By producing the input to the hash, both parties know that the 
transaction may be redeemed by broadcasting the transactions on the blockchain. The parties 
may then cooperate and settle the transaction with a new Commitment Transaction (and 
invalidating the previous Commitment Transaction).

If the current date is after the agreed upon timeout, both parties should update with a new 
Commitment Transaction refunding the balance and removing the HTLC, as the clearing 
process has failed.

In nearly all situations, all participants want to close out the transaction as early as possible 
instead of waiting until expiry to keep their channels open.

3.5. Closing Out a Channel
In the event the counterparty does not wish to settle using a new Commitment Transaction or 
is otherwise uncooperative, a delivery event occurs and all current transactions must be 
broadcast to the blockchain, closing the channel. The Funding Transaction, most recent 
Commitment Transactions, and all pending HTLCs are broadcast to the blockchain.

One must be able to enforce the contract defined in the HTLC by settling the contract with 
ones’ counterparty. If one is unable to do so, then one must broadcast to the blockchain 
before a timeout is enforced if one is able to settle the HTLC. If timeout has occurred and the 
failure cannot be closed with a new Commitment Transaction, a broadcast on the blockchain 
must also occur.
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In the above HTLC, Bob must settle the transaction within 3 days. In the event Alice cannot 
be contacted, Bob must broadcast the Commitment Transaction and HTLC Timeout 
Transaction on day 3. If Bob does not, then the contract timeout terms may not be 
enforceable.

The result is a system whereby contract enforcement occurs on the blockchain according to 
the rules defined in the contract. Clearing states are defined by timelocks, and the ability to 
produce the preimage R of hash(R).

Both parties are able to send as many payments to their counterparty as they wish, as long as 
they have funds available in the channel, knowing that in the event of disagreements they can 
broadcast to the blockchain the current state at any time.

In nearly every instance, the outputs from the Funding Transaction will never be broadcast to 
the blockchain. They exist as a failsafe in case the other party is non-cooperative, much like 
how most legal contracts do not lead to lawsuits and judgments. A proven contract 
enforcement mechanism is sufficient incentive for both parties to cooperate.

When either party wishes to close out a channel cooperatively, they will be able to do so via 
novation by contacting the other party and spending from the Funding Transaction with an 
output of the most current Commitment Transaction. No further payments may occur in the 
channel.

Fig 3. Both parties take the balances in the current Commitment Transaction and spend from the Funding 
Transaction with a Exercise Settlement Transaction (ES). If the most recent Commitment Transaction gets 
broadcast instead, the payout (less fees) will be the same.

Channels must close out before the earliest locktime defined in Commitment Refund (CR), 
Settlement Delivery (SD), or Timeout Refund (TR) transactions. Failure to close the channel 
via Exercise Settlement or broadcast of the most recent transaction tree (in the event of an 
uncooperative counterparty) before the most recent CR, SD, or TR locktime may result in 
loss of funds.

3.6. Key Storage
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Keys are generated using BIP 0032 Hierarchical Deterministic Wallets[9]. Keys are pre-
generated by both parties. Keys are generated in a merkle-tree and very deep. For instance, 
Alice pre-generates one million keys, each key being a child of the previous key. Alice 
allocates according to some deterministic manner which keys to use. For example, she starts 
with the child deepest in the tree to generate many sub-keys for day 1. This key is used as a 
master key for all keys generated on day 1. She gives Bob the address she wishes to use for 
the next transaction, and discloses the private key to Bob when it becomes invalidated. When 
Alice discloses to Bob all private keys derived from the day 1 master key and does not wish 
to continue using that master key, she can disclose the day 1 master key to Bob. At this point, 
Bob does not need to store all the keys derived from the day 1 master key. Bob does the same 
for Alice and gives her his day 1 key.

When all Day 2 private keys have been exchanged, for example by day 5, Alice discloses her 
Day 2 key. Bob is able to generate the Day 1 key from the Day 2 key, as the Day 1 key is a 
child of the Day 2 key as well.

If a counterparty broadcasts the wrong Commitment Transaction, which private key to use in 
a transaction to recover funds can either be brute forced, or if both parties agree, they can use 
the sequence id number when creating the transaction to identify which sets of keys are used.

This enables participants in a channel to have prior output states (transactions) invalidated by 
both parties without using much data at all. By disclosing private keys pre-arranged in a 
merkle-tree, it is possible to invalidate millions of old transactions with only a few kilobytes 
of data per channel. Core channels in the Lightning Network can conduct billions of 
transactions without a need for significant storage costs.

3.7. Blockchain Transaction Fees
It is possible for each participant to generate different versions of transactions to ascribe 
blame to who broadcast the transaction on the blockchain. By knowing who broadcast a 
transactions and ascribing blame, a 3rd party service can be used to hold fees in a 2-of-3 
multisig escrow. If one wishes to broadcast the transaction chain instead of agreeing to do a 
Funding Close or replacement with a new Commitment Transaction, one would communicate 
with the 3rd party and broadcast it to the blockchain. If the counterparty refuses the notice 
from the 3rd party to cooperate, the penalty is rewarded to the non-cooperative party. In most 
instances, participants may be indifferent to the transaction fees in the event of an 
uncooperative counterparty.

Note that non-cooperation is only a relevant factor to one’s immediate counterparty in the 
micropayment channel, and no other parties. One should pick counterparties in the channel 
who will be cooperative, so a 3rd party service is not required. Note that this does not require 
trust among the rest of the network, and is only relevant for the comparatively minor 
transaction fees. The less trusted party may just be the one responsible for transaction fees.

4. Pay to Contract
It is possible construct a cryptographically provable “Delivery Versus Payment” contract, or 
pay-to-contract[10] , as proof of payment. This proof can be established as knowledge of the 
input R from hash(R) as payment of a certain value. By embedding the contract between the 
buyer and seller that knowing R is proof of funds sent, the recipient of funds has no incentive 
to disclose R unless they have certainty that they will receive payment. When the funds 
eventually get pulled from the buyer by their counterparty in their micropayment channel, R 
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is disclosed as part of that pull of funds. One can design paper legal documents that specify 
knowledge or disclosure of R implies fulfillment of payment. The sender can arrange a 
cryptographically signed contract for knowledge of inputs for hashes as fulfillment of 
contracts before payment.

5. The Bitcoin Lightning Network
By having a micropayment channel with contracts encumbered by hashlocks and timelocks, 
it is possible to clear transactions over a multi-hop payment network using a series of 
decrementing timelocks without additional central clearinghouses.

Traditionally, financial markets clear transactions by transferring the obligation for delivery 
at a central point and settle by transferring ownership through this central hub. Bank wire and 
fund transfer systems (such as ACH and the Visa card network), or equities clearinghouses 
(such as the DTCC) operate in this manner.

As Bitcoin enables programmatic money, it is possible to create transactions without 
contacting a central clearinghouse. Transactions can execute off-chain with no 3rd party 
which collects all funds before disbursing it -- only transactions with uncooperative channel 
counterparties become automatically adjudicated on the blockchain. 

The obligation to deliver funds to an end-recipient is achieved through a process of chained 
delegation. Each participant along the path assumes the obligation to deliver to a particular 
recipient. They pass on this obligation to the next participant in the path. The obligation of 
each subsequent participant along the path, defined in their respective HTLCs, has a shorter 
time to completion compared to the prior participant. This way each participant is sure that 
they will be able to claim funds when the obligation is sent along the path.

Bitcoin Transaction Scripting, a form of what some call an implementation of “Smart 
Contracts”[11], enables systems without trusted custodial clearinghouses or escrow services.

5.1. Decrementing Timelocks
Presume Alice wishes to send 0.001 BTC to Dave. She locates a route through Bob and 
Carol. The transfer path would be Alice to Bob to Carol to Dave.

Fig 4. Payment over the Lightning Network using HTLCs.

When Alice sends payment to Dave through Bob and Carol, she requests from Dave hash(R) 
to use for this payment. Alice then counts the amount of hops until the recipient and uses that 
as the HTLC expiry. In this case, she sets the HTLC expiry at 3 days. Bob then creates an 
HTLC with Carol with an expiry of 2 days, and Carol does the same with Dave with an 
expiry of 1 day. Dave is now free to disclose R to Carol, and both parties will likely agree to 
immediate settlement via novation with a replacement Commitment Transaction. This then 

12



occurs step-by-step back to Alice. Note that this occurs off-chain, and nothing is broadcast to 
the blockchain when all parties are cooperative.

Fig 5. Settlement of HTLC, Alice’s funds get sent to Dave.

Decrementing timelocks are used so that all parties along the path know that the disclosure of 
R will be able to pull funds, since they will at worst be pulling funds after the date whereby 
they must receive R. If Dave does not produce R within 1 day to Carol, then Carol will be 
able to close out the HTLC. If Dave broadcasts R after 1 day, then he will not be able to pull 
funds from Carol. Carol’s responsibility to Bob occurs on day 2, so Carol will never be 
responsible for payment to Dave without an ability to pull funds from Bob provided that she 
updates her transaction with Dave to the blockchain or via novation.

In the event that R gets disclosed to the participants halfway through expiry along the path 
(e.g. day 2), then it is possible for some parties along the path to be enriched. The sender will 
be able to know R, so due to Pay to Contract, the payment will have been legally fulfilled 
even though the receiver did not receive the funds. Therefore, the receiver will never disclose 
R unless they are certain they will receive payment from one of their channel counterparties.

In the event a party outright disconnects, the counterparty will be responsible for 
broadcasting the current Commitment Transaction state in the channel to the blockchain. 
Only the failed non-responsive channel state gets closed out on the blockchain, all other 
channels should continue to update their Commitment Transactions via novation inside the 
channel. Therefore, counterparty risk for transaction fees are only exposed to direct channel 
counterparties. If a node along the path decides to become unresponsive, the participants not 
directly connected to that node suffer only decreased time-value of their funds by not 
conducting early settlement before the HTLC close.

Fig 6. Only the non-responsive channels get broadcast on the blockchain, all others are settled off-chain via 
novation.

5.2. Payment Amount
It is necessary to use a small payment per HTLC. One should not use an extremely high 
payment, in case the payment does not fully route to its destination. If the payment does not 

13



reach its destination and one of the participants along the path is uncooperative, it is possible 
that the sender must wait until the expiry before receiving a refund. Since transactions don’t 
hit the blockchain with cooperative channel counterparties, it is recommended to use as small 
of a payment as possible. A tradeoff exists between locking up transaction fees on each hop 
versus the desire to use as small transaction fee as possible. Smaller transfers with more 
intermediaries imply a higher percentage paid as Lightning Network fees to the 
intermediaries.

5.3. Clearing Failure and Rerouting
If a transaction fails to reach its final destination, the receiver should send an equal payment 
to the sender with the same hash, but not disclose R. This will net out the disclosure of the 
hash for the sender, but may not for the receiver. The receiver, who generated the hash, 
should discard R and never broadcast it. If one channel along the path cannot be contacted, 
then the channels may elect to wait until the path expires, which all participants will likely 
close out the HTLC as unsettled without any payment with a new Commitment Transaction.

Fig 7. Dave creates a path back to Alice after Alice fails to send funds to Dave, because Carol is uncooperative. 
The input R from hash(R) is never brodcast by Dave, because Carol did not complete her actions. If R was 
broadcast, Alice will break-even. Dave, who controls R should never broadcast R because he may not receive 
funds from Carol, he should let the contracts expire. Alice and Bob have the option to net out and close the 
contract early, as well, in this diagram.

If the refund route is the same as the payment route, and there are no half-signed contracts 
whereby one party may be able to steal funds, it is possible to outright cancel the transaction 
by replacing it with a new Commitment Transaction starting with the most recent node who 
participated in the HTLC.

It is also possible to clear out a channel by creating an alternate route path in which payment 
will occur in the opposite direction (netting out to zero) and/or creating an entirely alternate 
route for the payment path. This will create a time-value of money for disclosing inputs to 
hashes on the Lightning Network. Participants may specialize in high connectivity between 
nodes and offering to offload contract hashlocks from other nodes for a fee. These 
participants will agree to payments which net out to zero (plus fees), but are loaning bitcoins 
for a set time period. Most likely, these entities with low demand for channel resources will 
be end-users who are already connected to multiple well-connected nodes. When an end-user 
connects to a node, the node may ask the client to lock up their funds for several days to 
another channel the client has established for a fee. This can be achieved by having the new 
transactions require a new hash(Y) from input Y in addition to the existing hash which may 
be generated by any participant, but must disclose Y only after a full circle is established. The 
new participant has the same responsibility as well as the same timelocks as the old 
participant being replaced. It is also possible that the one new participant replaces multiple 
hops.
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Fig 8. Erin is connected to both Bob and Dave. If Bob wishes to free up his channel with Carol, since that 
channel is active and very profitable, Bob can offload the payment to Dave via Erin. Since Erin has extra 
bitcoin available, she will be able to collect some fee for offloading the channel between Bob and Carol as well 
as between Carol and Dave. The channels between Bob and Carol as well as Carol and Dave are undone and 
no longer have the HTLC, nor has payment occurred on that path, it will occur on the path involving Erin. This 
is achieved by creating a new payment from Dave to Carol to Bob contingent upon Erin constructing an HTLC. 
The payment in dashed lines (red) are netted out to zero and settled via a new Commitment Contract.

5.4. Payment Routing
It is theoretically possible to build a routing path implicitly from observing 2-of-2 multisigs 
on the blockchain to build a routing table. Note, however, this is not feasible with pay-to-
script-hash transaction outputs, which can be resolved out-of-band from the bitcoin protocol 
via a 3rd party routing service. Building a routing table will become necessary for large 
operators, and is largely a solved problem (e.g. BGP, CJBDNS). Eventually, with 
optimizations, the network will look a lot like the correspondent banking network, or Tier-1 
ISPs. Similar to how packets still reach their destination on your home network connection, 
not all participants need to have a full BGP routing table. The core Tier-1 routes can be online 
all the time -- while nodes at the edges, such as average users, would be connected 
intermittently.

5.5. Fees
Lightning Network Fees, which differ from blockchain fees, are paid directly between 
participants within the channel. The fees pay for the time-value of money for consuming the 
channel for a determined maximum period of time, and for counterparty risk of non-
communication.

Counterparty risk for fees only exist with one’s direct channel counterparty. If a node two 
hops away decides to disconnect and their transaction gets broadcast on the blockchain, one’s 
direct counterparties should not broadcast on the blockchain, but continue to update via 
novation with a new Commitment Transaction. See the HTLC section on fees for more 
information about counterparty risk.

The time-value of fees pays for consuming time (e.g. 3 days) and is conceptually equivalent 
to a gold lease rate without custodial risk; it is the time-value for using up the access to 
money for a very short duration. Since certain paths may become very profitable in one 
direction, it is possible for fees to be negative to encourage the channel to be available for 
those profitable paths.

6. Risks
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The primary risks relate to timelock expiration. Additionally, for core nodes and possibly 
some merchants, funds are held online (“hot wallet”).

6.1. Improper Timelocks
Participants must choose timelocks with sufficient amount of time. If insufficient time is 
given, it is possible that transactions believed to be invalid will become valid, enabling coin 
theft by the counterparty. There is a trade-off between longer timelocks and the time value of 
money.

6.2. Forced Expiration Spam
Forced expiration of many transactions may be the greatest systemic risk when using the 
Lightning Network. If a malicious participant creates many channels and forces them all to 
expire at once, these may overwhelm block data capacity, forcing expiration and broadcast to 
the blockchain. The result would be a mass spam on the bitcoin network. The spam may 
delay transactions to the point where other locktimed transactions become valid.

This may be mitigated by permitting one transaction replacement on all pending transactions. 
Anti-spam can be used by permitting one transaction replacement of a higher sequence 
number by an opposite of an even or odd number. E.g. if an odd sequence number was 
broadcasted, permit a replacement to a higher even number only once. Transactions would 
use the sequence number in an orderly way to replace other transactions. This mitigates the 
risk assuming honest miners. There may be some further consensus mining optimizations, as 
well. This attack is extremely high risk, as incorrect broadcast of Commitment Transactions 
entail a full penalty of all funds in the channel.

Additionally, one may attempt to steal HTLC transactions by forcing a timeout transaction to 
go through when it should not. This can be easily mitigated by having each transfer inside the 
channel be lower than the total transaction fees used. Since transactions are extremely cheap 
and do not hit the blockchain with cooperative channel counterparties, large transfers of value 
can be split into many small transfers. This attempt can only work if the blocks are 
completely full for a long time. While it is possible to mitigate it using a longer HTLC 
timeout duration, a better method is to use a blocksize soft-cap.

If this type of transaction becomes the dominant form of transactions which are included on 
the blockchain, it may become necessary to increase the block size and run a soft-cap 
structure as described in the section below. Creating a bitcoin soft-cap can create sufficient 
penalties and disincentives to be highly unprofitable and unsuccessful for attackers, as 
attackers lose all their funds from broadcasting the wrong transaction, to the point where it 
will never occur.

6.3. Coin Theft via Hacking
As parties must be online and using private keys to sign, there is a possibility that if one’s 
computer is compromised, that coins will be stolen by the counterparty. While there may be 
methods to mitigate the threat for the sender and the receiver, the intermediary nodes must be 
online and will likely be processing the transaction automatically. For this reason, the 
intermediary nodes will be at risk and should not be holding a substantial amount of money 
in this “hot wallet.” Intermediary nodes which have better security will likely be able to out-
compete others in the long run and be able to conduct greater transaction volume due to 
lower fees. Historically, one of the largest component of fees/interest is from various forms of 
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counterparty risk -- in Bitcoin it is possible that the largest component in fees will be derived 
from security risk premiums.

A Funding Transaction may have multiple outputs with multiple Commitment Transactions, 
with the Funding Transaction and some Commitment Transactions stored offline. It is 
possible to create an equivalent to a “Checking Account” and “Savings Account” by moving 
funds between outputs from a Funding Transaction, with the “Savings Account” stored 
offline and requiring additional signatures from security services.

6.4. Data Loss
When one party loses data, it is possible for the counterparty to steal funds. This can be 
mitigated by having a 3rd party data storage service where encrypted data gets sent to this 3rd 
party service which the 3rd party cannot decrypt. Additionally, one should choose channel 
counterparties who are responsible and willing to provide the current state, with some 
periodic tests of honesty.

6.5. Forgetting to Broadcast the Transaction in Time
If one does not broadcast a transaction at the correct time, the counterparty may steal funds. 
This can be mitigated by having a designated 3rd party to send funds. An output fee can be 
added to create an incentive for this 3rd party to watch the network. Further, this can also be 
mitigated by implementing relative OP_CHECKLOCKTIMEVERIFY.

7. Relative OP_CHECKLOCKTIMEVERIFY: Solving 
long-term timelocks
It may be undesirable to lock up funds for a long periods of time. A tradeoff between 
transaction fees due to blockchain broadcasts and trusting the other party in the channel to 
cooperate and stay online exists.

A relative OP_CHECKLOCKTIMEVERIFY[12] can resolve this problem. By using a relative 
locktime opcode, one can invalidate transactions after they are broadcast independent of 
dates. It would therefore be possible to have transactions with very low 2-of-2 locktimes. The 
transactions are then sent to another 2-of-2 for a determinate period of time, for example 2 
weeks. When that transaction is broadcast on the blockchain, the funds cannot be spent for 
two weeks, whose counter begins upon blockchain inclusion.

When an incorrect transaction gets broadcast with a two week relative 
OP_CHECKLOCKTIMEVERIFY, the counterparty is free to spend from that locked 
transaction for the next two weeks and take all funds as a penalty if the counterparty has the 
signatures or private keys. If one discloses to the counterparty this information, that 
transaction is in-effect invalidated, as the counterparty may spend from that 2-of-2 relative 
locktimed transaction within those two weeks. If the transaction is not redeemed after two 
weeks, then the part of the script checking for the relative OP_CHECKLOCKTIMEVERIFY 
would be valid.

Alternatively, is also possible to have something like an “OP_DEPTHLESSTHANVERIFY” 
to compare the input’s block depth with a number on the stack. If the input is in a block 
which is less than the specified number of blocks deep, the script continues. If the input is too 
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deep, the transaction is marked as invalid. There is a minimum allowable depth comparison 
to prevent reorg risks. 

8. Block Size Increases and Consensus
If we presume that a decentralized payment network exists and one person will make 3 
blockchain transactions per year on average, Bitcoin will be able to support over 35 million 
users with 1MB blocks in ideal circumstances (assuming 2000 transactions per MB). This is 
quite limited, and an increase of the block size may be necessary to support everyone in the 
world using Bitcoin. Any increase of the block size is a hard fork, meaning all nodes will 
need to update their wallets if they wish to participate in the network with the larger blocks.

While it may appear as though this system will mitigate block size increases in the short 
term, it will increase the necessity of a block size increase in the long term. Creating a 
credible threat that spamming the blockchain to encourage transactions to timeout becomes 
imperative.

To mitigate timelock spam vulnerabilities, non-miner and miners’ consensus rules may also 
differ if the miners’ consensus rules are more restrictive. Non-miners may accept blocks over 
1MB, while miners may have different soft-caps on block sizes. If a block size is above that 
cap, then that is viewed as an invalid block by other miners, but not by non-miners. The 
miners will only build the chain on blocks which are valid according to the agreed-upon soft-
cap. This permits miners to agree on raising the block size limit without requiring frequent 
hard-forks from clients, so long as the amount raised by miners does not go over the clients’ 
hard limit. This mitigates the risk of mass-expiry of transactions at once. All transactions 
which are not redeemed via Exercise Settlement (ES) may have a very high fee attached, and 
miners may use a consensus rule whereby those transactions do not apply to the soft-cap, 
making it very likely the correct transactions will enter the blockchain.

This can be achieved by rejecting blocks which violate agreed terms up to 1-3 block height, 
or by embedding some consensus rule as a vote in the coinbase transaction, looking back in 
some set number of blocks (e.g. past 1000 blocks).

When transactions are viewed as circuits and contracts instead of transaction packets, the 
consensus risks can be measured by the amount of time available to cover the UTXO set 
controlled by hostile parties. In effect, the upper bound of the UTXO size is determined by 
transaction fees and the standard minimum transaction output value. If the bitcoin miners’ 
have a deterministic mempool which prioritizes transactions respecting a “weak” local time 
order of transactions, it could become extremely unprofitable and unlikely for an attack to 
succeed. Any transaction spam time attack by broadcasting the incorrect Commitment 
Transaction is extremely high risk for the attacker, as it requires an immense amount of 
bitcoin and all funds commited in those transactions will be lost when the attacker fails.

9. Use Casaes
In addition to helping bitcoin scale, there are many uses for these types of transactions
• Instant Transactions. Bitcoin transactions are now nearly instant with any party on 

this network. It is possible to pay for a cup of coffee with direct non-revocable 
payment in milliseconds to seconds.

• Exchange Arbitrage. There is presently incentive to hold funds on exchanges to be 
ready for large market moves due to 3-6 block confirmation times. It is possible for 
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the exchange to participate in this network and for clients to move their funds on and 
off the exchange for orders nearly instantly. If the exchange does not have deep 
market depth and commits to only permitting limit orders close to the top of the order 
book, then the risk of coin theft becomes much lower. The exchange, in effect, would 
no longer have any need for a cold storage wallet. This may substantially reduce 
thefts and the need for trusted 3rd party custodians.

• Micropayments. Bitcoin blockchain fees are far too high to accept micropayments. 
With this system, micropayments using Bitcoin without a 3rd party custodian is now 
possible. It is possible to pay per-megabyte for internet service or per-article to read a 
newspaper.

10. Conclusions
Creating a network of micropayment channels enables bitcoin scalability, micropayments 
down to the satoshi, and near-instant transactions. These channels are real Bitcoin 
transactions, using the Bitcoin scripting opcodes to enable transfer of funds without outright 
counterparty theft, if some block soft-cap is in place and enforced as part of the miners’ 
consensus rules.

If all Bitcoin transactions were on the blockchain, to enable 7 billion people to make two 
transactions per day, it would require 24GB blocks every ten minutes at best (presuming 250 
bytes per transaction and 144 blocks per day). Conducting all global payment transactions on 
the blockchain today implies miners will need to do an incredible amount of computation, 
severely limiting bitcoin scalability and full nodes to a few centralized processors.

If all Bitcoin transactions were conducted inside a network of micropayment channels, to 
enable 7 billion people to make two channels per year with unlimited transactions inside the 
channel, it would require 133 MB blocks (presuming 500 bytes per transaction and 52560 
blocks per year). Current generation desktop computers will be able to run a full node with 
old blocks pruned out on 2TB of storage.

With a network of micropayment channels whose payments are encumbered by timelocks 
and hashlock outputs, Bitcoin can scale to billions of users without custodial risk or  
blockchain centralization when transactions are conducted securely off-chain using bitcoin 
scripting, with enforcement of non-cooperation by broadcasting signed multisignature 
transactions on the blockchain.
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encumbering a hub-and-spoke payment channel.

[TODO NOTE: still working on references]

Appendix A: Trusted Hub-and-Spoke Micropayment 
Networks
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It is possible to create a hub-and-spoke micropayment network which has weak dependence 
upon a 3rd party, with much lower expiry times.

To spend from this alternative micropayment channel in a hub-and spoke network, there are 
multiple outputs from the Commitment Transaction. The first two include balances for Alice 
and Bob, the third output are the sends in progress. These sends are a 2-of-3 multi-signature 
output. The 3rd signature is the clearing house service.

If Alice wishes to send funds to Carol through Bob, using clearing house service Hector, 
Carol first gives Alice a signed message requesting funds using hash(R), derived from a 32-
byte random data R. Then Alice creates a transaction whereby the output for the Commitment 
Transaction includes a 2-of-3 multisig between Alice, Bob and Hector. Alice also sends a 
separately signed message asserting the hash(R), the desired timeout, as well as the desired 
routing endpoint. This message is out-of-band from the bitcoin system. It should only be read 
by Bob and Hector to verify the end recipient and hash(R) and can be in whatever agreed 
upon format.

Bob then does the same with Carol by providing the same hash(R) and a 2-of-3 multisig to 
Hector. Carol then discloses R to Bob, who then discloses it to Alice. At this point, all parties 
double-spend their previous Commitment Transaction without the 2-of-3 multisig 
encumbered output if the transaction occurs within some predefined amount of time (e.g. 30 
seconds). If any part of this transaction does not complete before the alloted time, Hector is 
notified and the transaction path is invalidated. Note that the desired timeout by each 
participant must be lower for the next hop.

The clearing house service is not contacted unless the transaction expired before it could 
finish.

It is possible to create multi-hop networks with a chain of 4 or 5 participants. It is also 
possible to use different clearing house services along this path, so long as one of the 
intermediary participants is willing to have that exposure. Since the clearing house service 
may be anyone, and may change along the path, the lock-in due to network effects are 
marginal.

Low latency clearing is possible when having a trusted 3rd party service. Since this 3rd party 
clearing house service is capable of colluding with one’s counterparty to steal funds (as it is 
in a 2-of-3 multisig), only extremely small micropayments should be sent. This is not a 
problem because sends should be very close to free and splitting up a large transaction to 
hundreds or even thousands of tiny transactions should be inconsequential. If the clearing 
house service and counterparty can only collude to steal 0.000001 BTC at a time.

Under this model, the trusted clearing house service does not take full custody of funds. All 
funds are locked with a 2-of-3 multisig, so theft requires collusion of multiple parties. 

Appendix B: Fixing Malleability
In order to create these contracts in Bitcoin without a 3rd party trusted service, Bitcoin must 
fix the transaction malleability problem. If transactions can be mutated, then signatures can 
be invalidated (as they are spending from a transaction ID which does not exist), thereby 
making refund transactions and commitment bonds invalidated. This creates an opportunity 
for hostile actors to use it as an opportunity for a negotiating tactic to steal coins, in effect, a 
hostage scenario.
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Fixing malleability necessitates to make a soft-fork change to bitcoin. Older clients would 
still work, but miners would need to update. Bitcoin has had several soft forks in the past, 
including pay-to-script-hash (P2SH).

To mitigate malleability, it requires changing which contents are signed by the participants. 
This is achieved by creating new Sighash types. In order to accommodate this new behavior, 
a new P2SH type or new OP_CHECKSIG is necessary to make it a soft-fork rather than a 
hard-fork. 

Either may be used, if a new P2SH was defined, it would use a different output script such as:
OP_DUP OP_HASH160 <20-byte hash> OP_EQUALVERIFY

Since this will always resolve to true provided a valid redeemScript, all existing clients will 
return true. 

This opens the scripting system to construct new rules, including new signature validation 
rules. Two new sighashes would need to be constructed. The new sighash, 
SIGHASH_NORMALIZED would sign the normalized transaction ID as an input. A second 
sighash type, SIGHASH_NOTXID, will not sign any input transaction IDs. A third sighash 
type, SIGHASH_NOINPUT, will not sign any input transactions IDs nor sign the index.

SIGHASH_NORMALIZED may be used for any transaction which doesn’t require any 
unusual scripting and permits transactions to resolve malleability without significant change 
in behavior for current wallets interested in blockchain payments only. SIGHASH_NOTXID 
and SIGHASH_NOINPUT implies significant risk with address reuse and should only be 
used for transactions where it is necessary, such as in combination with an unbroadcasted 
SIGHASH_SINGLE or SIGHASH_ANYONECANPAY, or where an unbroadcasted 
transaction needs to be re-used. The transaction itself still uses non-normalized Transaction 
IDs, but signs with the normalized Transaction ID if it is SIGHASH_NORMALIZED. In the 
event a transaction is mutated, a transaction must be updated to use the new Transaction ID, 
but does not need to be re-signed.

This allows one to be assured that one’s counterparty cannot invalidate entire trees of chained 
transactions of potential contract states which were previously agreed upon, using transaction 
ID mutation. With the new sighash flags, it is possible to spend from a parent transaction 
even though the transaction ID has changed. 

Further, and just as importantly, it permits participants to sign spends of transactions without 
knowing the signatures of the transaction being spent. By solving malleability in the above 
manner, two parties may build contracts and spending on transactions without either party 
having the ability to broadcast that original transaction on the blockchain until both parties 
agree. With the new sighash types, participants may build potential contract states and 
potential payout conditions and agree upon all terms, before the contract may be paid, 
broadcast, and executed upon without the need for a trusted 3rd party.
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