
Theoretical Computer Science 259 (2001) 671–678
www.elsevier.com/locate/tcs

Note

Computations with a deck of cards

Anton Stiglic
Zero-Knowledge Systems Inc, 888 de Maisonneuve East, 6th Floor, Montr�eal, Qu�e. Canada H2L 4S8

Received May 2000; revised September 2000; accepted October 2000
Communicated by A. Salomaa

Abstract

A deck of cards can be used as a cryptographic tool (Advances in cryptology : CRYPTO’93,
Lecture notes in Computer Science, Vol. 773, Springer, Berlin, 1994, pp. 319–330 [3]; The-
oret. Comput. Sci. 191(1–2) (1998) 173–193 [6]). Using a protocol that securely computes
the Boolean AND function, one can construct a protocol for securely computing any Boolean
function. This, in turn, can be used for secure multiparty computations, solitary games, zero-
knowledge proofs and other cryptographic schemes. We present a protocol for two people to
securely compute the AND function using a deck of 2 types of cards. The protocol needs a
total of only 8 cards, thus con>rming the assumption of an open question Cr@epeau and Kilian
(1994)[3] about the minimal number of values that are needed for this type of computation.
To our knowledge, the protocol is also the >rst one of its kind that does not need to make
copies of the inputs. We thus prove upper bounds for this type of computation. The protocol
is much simpler, uses less cards, and is more eBcient than the ones introduced in Cr@epeau and
Kilian (1994) [3] and Niemi and Renvall (1998)[6]. c© 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Bit Commitment; Cards; Cryptography; Multiparty-computation; Zero-knowledge
proofs

1. Introduction

Suppose Alice commits herself to a bit bA and Bob commits himself to bB. We
would like Alice and Bob to be able to compute bA ∧ bB in such a way that neither
one of them learns anything more than what they can deduce from their own input
and the output of the computation (for example, if Alice is committed to 0, she will
never know what bit Bob was committed to). Boer [4] >rst introduced a now classic

E-mail address: anton@zeroknowledge.com (A. Stiglic).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00409 -6



672 A. Stiglic / Theoretical Computer Science 259 (2001) 671–678

protocol that enables two participants to privately compute the AND function of their
inputs. To be able to compute any Boolean function (see Section 6) it is necessary
that the answer be in a committed format. Cr@epeau and Kilian came up with a solution
to this problem in [3], using 4 types of cards. Later on, Niemi and Renvall proposed
a solution in [6] that used only 2 types of cards. Although our solution is only linearly
more eBcient than the latter one (which in turn, is only linearly more eBcient than
the one in [3]), it proves important upper bounds and may be the most simple and
eBcient one that exists. A protocol for securely computing the Boolean AND function
is an important cryptographic tool with many applications, it can be used for multiparty
computations, solitary games, zero-knowledge proofs and more (we discuss these later
on, see also [4, 3, 1, 6]). Although the number of cards needed for the computation
of a Boolean function increases only linearly with the number of gates of the circuit
de>ning it, complex computations demand an extremely large amount of cards. Only
small computations of these kind can be done eBciently with cards, thus, even slight
optimizations of the AND protocol is useful.

2. The model

We will be working with the following alphabet:

� = {♥ ; ♣ ; ? }

Each value can be thought of as a suit in a deck of cards, ? representing a card with
its face down.

Let c1; c2; : : : ; cn be elements of �. c1c2 : : : cn can be considered as a deck of cards,
c1 being the topmost card, c2 the second, etc...

We de>ne (c1c2 : : : cn) as the set {c1c2 : : : cn; c2c3 : : : cnc1; : : : ; cnc1 : : : cn−1} (i.e., the
set of cyclic permutations of letters of the string c1c2 : : : cn).
〈 · 〉 will denote the operator that takes an element from the set �∗ to the set �∗

such that

〈c1; c2; : : : ; cn〉 −→ �

where � is picked randomly in (c1c2 : : : cn).
Applying 〈 · 〉 to a string can be thought of as applying a cyclic shuKing of the

cards represented by the string.
We will use the following coding:

♥ ♣ = 1; ♣ ♥ = 0

e will be a function which corresponds to turning a “string” of cards face down and
	 will be the inverse of e. We suppose that we cannot distinguish between ♥ ♣ and
♣ ♥ when they are face down ? ? and once we have applied 〈 · 〉 to them.



A. Stiglic / Theoretical Computer Science 259 (2001) 671–678 673

3. Bit commitment protocol

Say Alice wants to commit to a bit b, she simply does the following:

(1) She takes two distinct cards ♥ ♣ , shows them to Bob and then places them face
down ? ? (she applies e). Call this string 
.

(2) She then computes 
′ := 〈
〉.
(3) She outputs 
′.

To reveal the secret, we simply compute 	(
′) (i.e., we turn over the cards).

4. Secure AND protocol

Boer [4] >rst proposed a protocol to securely compute bA ∧ bB but the result was
not in a committed format. Cr@epeau and Kilian proposed a Las Vegas algorithm in [3]
that produced a committed output but it uses a larger alphabet (a deck of 4 diNerent
types of cards), needs to make copies of the cards that commit the input and takes
an average of 12 trials. Niemi and Renvall also proposed a solution in [6], their Las
Vegas algorithm used only 2 types of cards but also needed to make copies of the
input, took an average of 2:5 trials and the AND protocol needed a total of 10 cards.
The algorithm proposed here uses 2 types of cards and takes an average of 2 trials,
no copies of the committed inputs are needed and the total number of cards needed
is just 8. This gives an upper bound to the number of values (4 values coded by 8
cards) needed to be shuKed during the AND protocol, proving the assumption in the
open question of [3]. It also gives an upper bound to the number of copies needed of
the inputs: NO copies of the inputs need to be made.

Our protocol works as follows:
Denote x0x1 as the cards that commit Alices value bA and y0y1 the cards that commit

Bobs value bB. These cards are of the form ? ? , turned over they are either ♥ ♣ or
♣ ♥ . We need 4 extra cards: 2 ♥ ’s and 2 ♣ ’s.
(1) Place the cards as follows:

?︸︷︷︸
x0

?︸︷︷︸
x1

♥ ♣ ?︸︷︷︸
y0

?︸︷︷︸
y1

♣ ♥

(2) Then turn over the public cards, let’s call this “string” !.

? ? ? ? ? ? ? ?

(3) Now, let Alice and then Bob apply a cyclic shuKing: !̃←〈!〉.
(4) Turn over the two topmost cards of !̃, call this v.

If v ∈ {♥ ♥ ; ♣ ♣} then go on to step (5).
If v= ♣ ♥ , then turn over the third topmost card, if it is a ♥ , go on to the next
step, otherwise turn back over the public cards and go back to the cyclic shuKing
step (3).



674 A. Stiglic / Theoretical Computer Science 259 (2001) 671–678

If v= ♥ ♣ , then turn over the third topmost card, if it is a ♣ , go on to the next
step, otherwise turn back over the cards and go back to step (3).

(5) If the 2 topmost cards are ♥ ♥ , then the 6th and 7th topmost cards are the
commitment to the result

♥ ♥ ? ? ? ? ?︸︷︷︸
result

?

If the 3 topmost cards are ♣ ♥ ♥ , then the 7th and 8th cards are the commitment
to the result

♣ ♥ ♥ ? ? ? ? ?︸︷︷︸
result

If the 2 topmost cards are ♣ ♣ , then the 4th and 5th cards contain the commitment
to the result

♣ ♣ ? ? ?︸︷︷︸
result

? ? ?

Finally, if the 3 topmost cards are ♥ ♣ ♣ , then the 5th and 6th cards contain the
commitment to the result

♥ ♣ ♣ ? ? ?︸︷︷︸
result

? ?

To see why the protocol works and is secure, let’s see what happens from “under the
glass table”: At step two, we get one of the following con>gurations

bA bB ! uncovered

0 0 ♣︸︷︷︸
x0

♥︸︷︷︸
x1

♥ ♣ ♣︸︷︷︸
y0

♥︸︷︷︸
y1

♣ ♥

0 1 ♣︸︷︷︸
x0

♥︸︷︷︸
x1

♥ ♣ ♥︸︷︷︸
y0

♣︸︷︷︸
y1

♣ ♥

1 0 ♥︸︷︷︸
x0

♣︸︷︷︸
x1

♥ ♣ ♣︸︷︷︸
y0

♥︸︷︷︸
y1

♣ ♥

1 1 ♥︸︷︷︸
x0

♣︸︷︷︸
x1

♥ ♣ ♥︸︷︷︸
y0

♣︸︷︷︸
y1

♣ ♥

!̃ is just one of the above card con>gurations permuted by a cyclic shift, this is just
done so that Bob and Alice have no information on the order of the cards and the
act of turning the topmost card becomes equivalent to picking, uniformly at random,
a card from the deck. Now, after the cyclic shuKing, the probability that the 2 topmost
cards are ♥ ♥ is 1

8 , in all 4 cases and the probability that they are ♣ ♣ is also 1
8

in all 4 cases, so we get absolutely no information on the inputs of Alice and Bob.
On the other hand, the probability of picking ♥ ♣ is 3

8 in all 4 cases, same thing for
picking ♣ ♥ , so no information is leaked here either.



A. Stiglic / Theoretical Computer Science 259 (2001) 671–678 675

Finally, if we picked ♥ ♣ , the probability of picking a ♥ as the third card is 2
3 ,

and the probability of picking a ♣ for a third card is 1
3 , in all 4 cases. The probability

of picking ♥ ♣ ♣ or ♣ ♥ ♥ is also equiprobable in all four cases. These are all the
situations we will encounter, all probabilities are equiprobable in all four cases, thus,
demonstrating that our protocol is secure.

The fact that the protocol gives the commitment to the right answer can easily be
seen by observing the value coded by the cards to be picked by the protocol.

5. Other primitives

In order to be able to privately compute any probabilistic Boolean function we >rst
need to describe a few more primitives.

5.1. OR, NOT gates

It is easy to compute the negation of a committed bit, you simply reverse the order
of the two cards. With this in hand, and the AND protocol described in Section 4, we
can easily construct a protocol for the OR gate (bA ∨ bB≡¬bA ∧¬bB).

5.2. Random committed bits

For a probabilistic Boolean function, we can get random bits by taking cards com-
mitting bits and applying 〈 · 〉 to them.

5.3. Copies of a committed bit

Although copies of the committed bits are not needed to compute a simple boolean
gate, it is a tool that is needed for privately computing any Boolean function. We
present a protocol that enables us to make n copies of a committed bit, for any n. The
protocol comes directly from [3]

To copy a committed bit b:
(1) create the following con>guration:

? ?︸︷︷︸
b

♥ ♠ ♥ ♠ ♥ ♠

(2) Turn over the public cards, and apply a random cyclic shift to the 6 rightmost
cards

? ?
〈

? ? ? ? ? ?
〉

We get the following con>guration:

? ? ? ?︸︷︷︸
b′

? ?︸︷︷︸
b′

? ?︸︷︷︸
b′

where b′ is now an unknown bit



676 A. Stiglic / Theoretical Computer Science 259 (2001) 671–678

(3) Now, randomly shift the 4 topmost values
〈

? ? ? ?
〉

? ? ? ?

(4) Open the 4 topmost values.
If the sequence you see is alternating then it means that b= b′ and the 4 rightmost
cards form 2 copies of b.

♥ ♠ ♥ ♠ ? ?︸︷︷︸
b

? ?︸︷︷︸
b

Otherwise, the 4 rightmost values form 2 copies of ¬b
♥ ♠ ♠ ♥ ? ?︸︷︷︸

¬b

? ?︸︷︷︸
¬b

This protocol is easily generalized to make any number (n) of copies.

6. Computations with cards

6.1. Multi-party computations

The notion of multiparty computation (MPC) was >rst introduced in [7]. A >rst
protocol permitting a general multiparty computation, as well as completeness theorems,
was given in [5]. The MPC problem can be de>ned as follows: a group of n players
P1; : : : Pn wish to securely (and correctly) compute F(x1; : : : ; xn), where xi is Pi’s private
input and F is a public function which they have agreed upon. Securely here means
that a player pi does not get to know any more information than what he can deduce
from his own input and the result of the function. We assume here that the participants
always follow the protocol, in another case a more speci>c de>nition of security must
be provided (see [5, 2] for example). Also, if a group of participants decide to collide
together, they must form a minority of the total number of participants.

As mentioned in [3, 6], we can use the tools presented here to enable multiparty
computations of any Boolean function. We simply publicly describe a Boolean circuit
(AND, OR and NOT gates) de>ning the function and, using protocols described above,
securely compute each gate, keeping the answers in committed format and using them
for other inputs when necessary. The inputs of the participants are of course introduced
in a committed format. Only the >nal answer of the function is revealed. Probabilis-
tic Boolean functions can also be securely computed using the protocol described to
generate random committed bits.

6.2. Perfect zero-knowledge proofs

A zero-knowledge proof (ZKP) consists of an all powerful prover P and a poly-
nomial-time bounded veri>er V . P would like to convince V that he possesses an
answer to a certain problem without giving him the solution. We can use our protocol



A. Stiglic / Theoretical Computer Science 259 (2001) 671–678 677

to construct a ZKP for any NP-Complete decision problem. Simply reduce the problem
to the SAT problem (call the formula f). Now P, having the solution, commits to the
bits that satisfy f and securely computes f with these inputs. P reveals the >nal
answer to V . All of this is done in polynomial time, so V can verify.

6.3. Solitary games

As discussed in [3], any game can be played solitarily by describing the strategies
of one’s opponents in a probabilistic boolean circuit. POKER and BRIDGE are such
examples. To play in solitary one discreetly applies the strategies of the opponents by
using the secure protocols described above.

7. Remarks and open questions

(1) We assumed that cyclic permutations (cyclic shu>ings) of a deck of cards are
indistinguishable. A question that remains open is if there are more general primi-
tives that may allow us to do the same computations as discussed in this paper (for
example, [6] suggested to try moving from a cyclic symmetry group to a dihedral
group).

(2) A proof that the result presented in this paper, working in cyclic groups, is optimal
concerning the amount of cards that need to be used would be good. We have
started such proofs under certain conditions (no copying, 2 types of cards, using
the commitment scheme described in this paper), but a more generalized proof
would be better.

Acknowledgements

We would like to thank Alain Tapp, Niel Stewart, Fr@ed@eric L@egar@e and Adam Smith
for their appreciated comments concerning earlier versions of this paper. We would
also like to thank the anonymous referee for some >nal corrections.

References

[1] David Chaum, Ivan B. DamgSard, Jeroen van de Graaf, Multiparty computations ensuring privacy of each
party’s input, correctness of the result, in: Carl Pomerance (Ed.), Lecture Notes in Computer Science,
Vol. 293, Springer, Berlin, 1988, pp. 87–119.

[2] R. Cramer, I. DamgSard, S. Dziembowski, M. Hirt, T. Rabin, EBcient multiparty computations with
dishonest minority, Advances in Cryptology – EUROCRYPT 99, Lecture Notes in Computer Science,
vol. 1561, Springer, Berlin, March 1999, pp. 311–326.

[3] C. Cr@epeau, J. Kilian, Discreet solitary games, in: D.R. Stinson (Ed.), Advances in Cryptology: CRYPTO
’93, Lecture Notes in Computer Science, vol. 773, Springer, Berlin, 1994, pp. 319–330.

[4] B. den Boer, More eBcient match-making and satis>ability: the >ve card trick. in: J.-J. Quisquater, J.
Vandewalle (Eds.) Advances in Cryptology – EUROCRYPT 89, Lecture Notes in Computer Science,
vol. 434, Springer, Verlag, 1990, 10–13 April 1989, pp. 208–217.



678 A. Stiglic / Theoretical Computer Science 259 (2001) 671–678

[5] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game – A completeness theorem
for protocols with honest majority, in: ACM (Ed.), Proc. nineteenth Ann. ACM Symp. on Theory of
Computing, New York City, May 25–27, 1987, ACM Press, New York, NY 10036, USA, 1987, pp.
218–229.

[6] V. Niemi, A. Renvall, Secure multiparty computations without computers, Theoret. Comput. Sci. 191
(1–2) (1998) 173–183.

[7] A. Yao, Protocols for secure computation, in: IEEE (Ed.), 23rd Ann. Symp. on Foundations of Computer
Science, November 3–5, 1982, Chicago, IL, IEEE Computer Society Press, Silver Spring, MD, USA,
1982, pp. 160–164.


