
Theoretical
Computer Science

Theoretical Computer Science 19 1 (1998) 173-l 83

Note

Secure multiparty computations without computers

Valtteri Niemi a, Ari Renvall b, *

a Department of Mathematics and Statistics, University of Vaasa, PL 700. 65101 Vaasa, Finland
b Turku Centre for Computer Science and Department of Mathematics, University of Turku,

20014 Turku. Finland

Communicated by A. Salomaa

Abstract

Many simple calculations can be done easier without computers than by using them. We
show that the same holds for secure multiparty computations if the function to be computed is
simple enough. Our starting point is an observation of Bert den Boer: a multiparty computation
of a logical AND-gate can be performed by five simple playing cards. We show that by using
a reasonable amount of cards many useful functions can be computed in such a way that each
input stays private.

1. Introduction

Increasingly large amounts of computations are taken care of by computers, but other

computing methods also seem to survive. A pencil and a piece of paper are still more

easily accessible than a computer. It is also clear that many simple calculations can be

made much easier without computers.

On the other hand, people often take a prejudiced attitude in regard to the

use of computers. By experience they learn that, for instance, automatic teller ma-

chines very seldom miscalculate, but the attitude does not totally vanish. This fact

is one obstacle that prevents expansion of the practical use of cryptographic proto-

cols. Even if a protocol is provably secure against all cheaters, people are afraid

that their own personal computers may not f$ction exactly as they assume them

to do.

For example, let us consider a system for computerized elections (see, e.g. [l, 5,6]).

It might be the case that every transmission between the PC of a user and the system

is perfectly secure and no information about the voting strategy of the user is leaked

* Corresponding author. E.-mail: ariren@utu.fi.

0304-3975/98/$19.00 @ 199SPublished by Elsevier Science B.V. All rights reserved
PIZ SO304-3975(97)00107-2

174 K Nierni, A. Renvalll Theoretical Computer Science 191 (1998) 173-183

out. Still, the user is not easily convinced that all inputs given by the keyboard are

not saved into some hidden files where computer experts can read them.

There are also other reasons in favor of constructing computation methods that do

not depend on computers: electricity might be cut in a critical moment, computers also

break down occasionally, computers are not very cheap, a network of PCs is not easily

portable, etc. Sometimes it is also possible to find computing methods that are more

convenient than the use of computers.

We investigate secure multiparty computations (see, e.g. [3]). One of their typical

features is that the function to be computed collectively by the participants is itself

relatively easy to compute, but heavy computations are needed to hide the input of

each participant from the others. For instance, assume that a small group wants to

take a secret vote in a meeting. Surely, it is usually much easier to construct ballots

and a ballot box than to set up a computer voting protocol even if computers are

available. Using this traditional method, individual inputs are hidden by shuffling them

in a box. Unfortunately, this hiding method works only for a very limited number of

functions.

Our purpose is to construct respective physical hiding methods for a larger class of

functions. The starting point is an elegant protocol of Bert den Boer [2]: five simple

playing cards are used in order to compute the value of logical AND. The secrecy

of inputs is essentially guaranteed by “cutting the deck” a couple of times. Although

AND is a very simple function, it has several meaningful applications. In addition to

the one given in [2], let us mention the following one. Two parties are trying to make

a contract (for example, the parties could be an employer and a labor union). If the

negotiations do not succeed an arbitrator might be called to propose a compromise. For

tactical reasons, the parties do not want to tell immediately (not even to the arbitrator)

whether or not they accept the proposal. Instead, a card protocol is used to decide

whether or not both parties accept the proposal.

We generalize the five-card trick of [2] to cover any Boolean function. The number

of cards needed grows in the worst case linearly with respect to the number of gates in

the circuit that corresponds to the function. It is not very easy to handle a deck of one

thousand cards but several useful functions can be computed with a far smaller deck.

The time complexity of the protocol also grows linearly with respect to the number of

gates.

In [4], Claude Crepeau and Joe Kilian use similar methods to obtain a solitary card

protocol for selecting a random permutation with no fixed points. In fact, their paper

includes all the necessary tools for a general protocol for multiparty computations. The

difference to our work is that we use a smaller alphabet (i.e. a smaller number of

different cards), and our protocol is also more efficient.

One big problem in computing with cards is the fact that it is not easy to make

identical copies of a hidden card. Suppose you have several identical cards of each

type available. One card is on the table with face down. How to replace this one card

with two similar ones without revealing the type of the original card? In the final part

of the paper we give a partially successful answer to the problem.

V. Niemi, A. Renvalll Theoretical Computer Science I91 (1998) 173-183 175

2. The basic protocol

We first consider a two-party cryptographic protocol for evaluating the value of

a binary AND-gate. In [2] the situation is illustrated as follows. Alice and Bob have

just met and they want to find out whether they have some particular mutual inter-

est. However, they are both reluctant to show their interest unless they know that the

other one is also interested. Unfortunately, no third party trusted by both of them is

available.

More formally: Alice has a secret bit Q and Bob has a secret bit b. They want to

find out the conjunction a A b of these bits, but they are not ready to reveal their own

secret bits. In other words, if a = 0, Alice should not be able to find out b, and vice

versa. (Of course, if a = 1 then Alice knows that b = a A b). How to proceed?

In [2], den Boer gives a protocol to solve the problem physically. He uses a deck

of five cards. Two cards are red and three cards are green, for example. Cards with

the same color are identical and, moreover, the back side of each card (red and green)

is identical. We give a brief description of the protocol.

2.1. The “jive-card trick”

Initially, both Alice and Bob have one red and one green card. The remaining green

card is put face down on a table. Alice then puts her two cards face down on top of

the initial green card. The order of her cards (which Bob should not see) is determined

by her secret bit a: if a = 0 then the green card is put on top, if a = 1 then the top card

is red. Now Bob puts his cards at the bottom of the stack. Bob uses a complementary

rule when determining the order of his cards: the red card at the bottom means that

b = 1, and the green card at the bottom means b = 0.
After the five-card stack is constructed, Alice and Bob take turns “cutting” the cards,

i.e. they rearrange the stack with a random cyclic permutation not known to either of

them. When both are satisfied, they display the cards. It is easy to see, that the red

cards are next to each other, if and only if, a = b = 1 (here we have the cyclic order of

cards in mind). Moreover, the other three possibilities are indistinguishable, since the

corresponding stacks of cards are cyclic permutations of each others. Thus, using this

“trick”, Alice and Bob can settle their problem without the fear of getting embarrassed.

It is clear that we can compute some other binary Boolean functions analogously.

For example, the result of an OR-gate is obtained by just reversing the commitment

rule for both Alice and Bob. As a consequence, the result is 0 iff the two red cards

are next to each other.

3. Notations

In the following, we consider cards as elements of an alphabet A and ordered sets

of cards (i.e. decks) as words over A. The topmost card is the first letter of the word,

176 V. Niemi, A. Renvalll Theoretical Computer Science 191 (1998) 173-183

etc. If w E A* we denote w=wr . ..w.,, where wi E A. We define functions fi by

f;:A*+A*, f;:(W)=Wi+l...WnWl...Wi (i=1,2 ,..., TV).

In other words, if w is a deck of cards, h(w) is obtained by moving the i topmost cards

to the bottom of the deck. We also adopt the notation (w) = {f;:(w) 1 i = 1,2,. . . , n);

i.e. (w) is the set of cyclic permutations of w.

Our deck of cards consists of two different kinds of cards: green ones and red

ones. The cards have two possible states: they are either “face down” or “face up”.

Therefore, we define two sets: 17 = {G, R} corresponding to the face down cards, and

C = {g, r} corresponding to the face up cards. Using this notation we have A = II U Z.

For variables corresponding to the face down cards we usually use capital letters

X, Y,. . . , and small letters x, y,. are used with face up cards. Similarly, we use vari-

ables U, V, . . (resp., u, u, . . .) f or a deck of face down (resp., face up) cards. We also

denote G=R, R=G, g=r and F=g.

Let cp be the function which corresponds to turning a face down card face up:

q(G) = g and q(R) = r. We extend cp to a morphism cp : II* + C* in an obvious way.

The cryptographic assumption we use in our protocols is that computing cp is possible

only if all participants co-operate. (Of course, anyone in the possession of cards can

view a face down card, but the others will notice it.)

A commitment of a bit 0 is an element Do = GR E U2 and a commitment of a bit 1

is Di = RG E l7’. Denote D = {DO, 01) and define the decryption morphism 6 : D* +

{O,l}* by b(Db)=b (by {O,l}). H ence, a commitment of a bit is a pair of face

down cards, where the one card is green and the other card is red. The order of cards

determines the bit in question, similarly to the “five-card trick”. We use Greek letters

a, j?, _ . . to denote commitments.

Finally, we formalize our main cryptographic tool: cyclic shulIling of a deck of face

down cards. Cyclic shuffling of a deck W corresponds to choosing a random element

from (W). Denote this randomized algorithm by F

F(W)=J;:(W), where i&(1 ,..., IWl}.

We assume that it is possible to compute F in such way that no one learns the index i.

(This is acceptable, since, in practice, anyone is able to cut a deck of cards in such a

way that the others cannot observe the exact point of the cut. F can then be computed

by letting each participant to cut the deck in turns).

To get familiar with our notation, we redescribe the basic protocol for AND, given

in the previous section. Although the protocol has only two participants, we found it

convenient to introduce also a “middleman” M. Whatever M does, M does it publicly.

In other words, both A and B know everything that M knows. For example, if M

computes q(X) then both A and B find out the value. But if A or B computes it, the

other will not learn it. In practice, either A or B or both of them together may take

the role of M.

First, we give a protocol for encrypting secret bits.

V. Niemi, A. RenvaNlTheoretical Computer Science 191 (1998) 173-183 111

Protocol 1. A bit commitment protocol.

A’s secret input: A bit a.
(1) M gives A two cards LX” = GR.
(2) A computes LX’ = F(a”) and a’ = &a’).

i

CI’
(3) A outputs LX=

if a’=a,

fi(cc’) if a’= 1 - a.
It is clear that in the protocol 6(a) = a and that B cannot figure out the bit a.

The five-card trick can now be described as follows:

Protocol 2. A protocol for A and B for computing the conjunction of their secret
bits.

A’s secret input: A bit a.
B’s secret input: A bit b.

(1) A and B encrypt their secret bits by CY and fl (using Protocol 1), and give them

to M.
(2) M computes y=F(aGfi(j3)).

(3) M outputs 0, if q(y) E (rgrgg), and M outputs 1, if q(y) E (rrggg).

4. Computing AND, NOT and OR in encrypted form

The goal of this paper is to construct a “card protocol” for any Boolean function.

It seems to be a reasonable approach to build such a general protocol from protocols

for simple Boolean operators. These basic protocols should produce a commitment of

the output bit, so that it can later be used as input without knowing the value of the

bit it encrypts.

In some cases the same input is needed several times in the computation. As our

physical card commitments are unreusable, we also need a protocol for copying com-

mitments (without viewing the cards). The following quite natural protocol has also

been given in [4].

Protocol 3. A protocol for generating k copies of a bit commitment CI E D without
giving away any information on 6(a).

M’s input: A bit commitment CI =Xx ED.

(1) M constructs a deck U = (GR)k+‘. --
(2) M computes U’=F(U)=(YY)k+l and sets V=ala2U{U~==XXYY.
(3) M computes u = cp(F(V)).

(4) M Outputs w = 1 wJLU~(k+l) if v E (grgr),

f,(U,U,‘. . . U;(k+l)) if v E (grrg).

178 V. Niemi, A. Renvalll Theoretical Computer Science 191 (1998) 173-183

Theorem 1. W = ak =(Xx)“; and no information on 6(a) is revealed

--
Proof. If Y =X (i.e. if U’ = (Xz)k”) then we have V =XXXX. From this it follows

that cp(F(V)) E (grgr) and in step 4 we choose W = UiU4/. . . U.ck+lJ =(Xx)“. Corre-

spondingly, if Y =x then U’ = (zX)kf’ and V =XXXX. Hence, cp(F(V)) E (grog),

and therefore we choose W = fi (Ul C.Ji . . . U:(k+,j) = f~((xX)~) = (XX)k. Thus, in both

cases we have W = ak, as desired.

It remains to show that no information on X (i.e. 6(a)) leaks during the protocol. The

only possible source of information is in step 3, where we compute v = cp(F(V)). But

from D we can only conclude whether or not X = Y. This still leaves the cases X = G

and X = R equally probable, since Y is totally random and it will not be revealed. 0

The total number of cards needed in this protocol is 2k+4, four of which are “free”

after the protocol. It should be noted that while constructing k copies, we loose the

original commitment. Thus, there is no sense in producing only one copy.

In the following, we assume that all formulae are composed of AND, NOT and OR

operators only. We give a protocol for each operator.

NOT
Computing NOT in encrypted form is trivial. Obviously, if CI E D, then S(fi (ix)) = l-

6(a). In other words, it is enough to change the order of the commitment cards. To

preserve the original commitment we need to take first two copies of CI, as explained

above.

AND

The AND protocol described in Section 3 is not suitable for our purposes: we need

the output in encrypted form. In this section we modify the protocol to obtain the

desired properties.

Protocol 4. A protocol for A4 to evaluate the outcome of an AND gate in encrypted

form.

M’s input: Two bit commitments CI =X?? and p = Yr.

(1) M computes W = 01~ = (Xz)2 and W’ = /I2 = (Yr)2 by using protocol 3. --
(2) M constructs a deck U= FQ W2GW2’F!5’W3W4GWq’W3’=(XXGYY)2.
(3) M computes U’=F(U) and x=q(U,‘).
(4) If x = g then A4 sets U = U’ and goes back to step 3. (Of course, the topmost

card U,’ is first reset face-down; i.e. M computes q-‘(U,‘)).
If x = r then M computes v = cp(F(UiUi)).

(5) If v = gg then M outputs y = U,bU~.
If v E {gr, rg} then A4 outputs y = U:Ul.

Theorem 2. In the protocol given above, 6(y) = 6(a)l\6(/3), but no further information
on 6(a), S(p) or 6(y) is revealed.

V. Niemi, A. Renvalll Theoretical Computer Science I91 (1998) 173-183 179

Proof. Because of the construction of the word U in step 2 we know that q(U)

=U 2, where u=cp(aGfi(fl)). Thus, also in step 3, ~p(U’)=u’~, where U’E (u). After

step 4 we know that ui = r. Now we have only four possible cases: u’ = rrggg (outcome

is 1) or U’ =rgrgg (0) or u’=rggrg (0) or U’ =rgggr (1). A4 has no information of

which alternative is the correct one. However, we notice that if uiuj = gg then U,‘,Ud

(and UlU,‘) is a commitment of the outcome. Correspondingly, if uiu: E (gr) then

U7/Ui (and U~U~) is a commitment of the outcome. In step 5 we test which case is

in question (by using cards Ui and Ui) and determine the output according to it.

It remains to be shown that no unintended information on the commitments leaks

during the protocol. This is quite obvious. After step 4 we know that either U’ =

(RGGZz)2 or U’ = (RZzGG)2. But, because we do not know whether Z = G or Z = R,
this amounts to nothing. 0

In addition to the four input cards we need eight more cards to perform the protocol:

First, we need six cards in taking two copies of c(. Four cards are free after the copying
- thus, only two more cards are needed while copying j3. Again four cards (two red

and two green cards) are ready for reuse, and the two green cards are used as middle

cards in step 2. After the protocol, 10 of the 12 cards involved are free and two cards

encrypt the outcome.

Again, if we need the original commitments later, we should take a copy of them.

This can be done before we perform the protocol, but it is more convenient to do it

during the protocol. In step 1 we need to take copies of the inputs anyway, so without

any trouble we can take one copy more. Then, however, we need four more cards -

thus the necessary number of cards increase up to 16.

Our AND protocol is probabilistic. In step 3 we keep shuffling the deck and looking

up the color of the topmost card, until the card is red. Because four of the ten cards

are red, the expected number of loops is 2;. We have found a solution to avoid this

minor problem. However, the solution is much more complicated and the number of

necessary cards is 44. We omit the solution here.

OR
Because p V q = -(up A lq), it is easy to modify the AND protocol to obtain a pro-

tocol for OR. The only changes are in step 2, where now A4 constructs U = (f~(c~)Gfi)~,

and in step 5, where the final output is reversed.

It would be equally easy to construct a protocol for the Sheffer function NAND. It

is, however, more convenient to construct more complicated computations using AND,

NOT and OR than by using NAND.

5. Computing any Boolean function

In this section we give a general protocol for computing any Boolean function. The

protocol is straightforward: first the participants commit to their secret bits and then

180 V. Niemi, A. Renvalll Theoretical Computer Science 191 (1998) 173-183

the value of the function (circuit) is evaluated proceeding operator by operator (gate

by gate) using the protocols of the preceeding section. The final commitment obtained

from the last gate is then revealed. We do not give a proof or a detailed description

of the protocol, as they should be obvious after the preceeding section.

Protocol 5. A protocol to compute any Boolean function composed of AND, NOT

and OR gates in encrypted form.

M’s input: A Boolean circuit with S gates and commitments of the N input bits.

(1) A4 prepares a deck of ten cards U = (GR)5, and additionally for each gate Gi,

M reserves a pair of cards pi = GR.

(2) M computes the value of each Gi in proper order using the protocols of the

preceding section. In order to do this M uses the input commitments, together

with fii and U.

(3) M computes 6(y), where y is the commitment obtained from the computation

of the final gate.

Obviously, the number of cards needed in this protocol is 2(N + 5’) + 10. After the

protocol we still have a commitment of each input bit and the output bit of every

gate. In most cases this is not necessary and hence the actual number of cards needed

is usually lower. A better estimation on the necessary number of cards is obtained

by counting the maximum number of bits that need to be remembered simultaneously

during the protocol. If this number is denoted by P, then we can manage with 2P + 10

cards.

For example, if our function is the kary AND (i.e. f(bi,. ..,bk)= bl ~...Abk) then

at each moment we need to remember only two bits. First bl and b2, then bl A b2

and b3, then bl A b2 A b3 and b4 etc. According to the formula we can manage with

14 cards. It can be shown that, in this special case, only 12 cards are needed (the same

number as with ordinary AND with two input bits).

The AND function is an example of a threshold function. The value of a threshold

function is fully determined by the number of 1s (or OS) among the input bits. It is

quite easy to see that when computing a threshold function with N input bits, only

N+2 bits need to be remembered at each moment. Thus, N people can make a majority

decision using a deck of 2N + 14 cards in such way, that the exact number of yes and

no votes will not be revealed.

5.1. Zero-knowledge with cards

Zero-knowledge proofs are important building blocks in many cryptographic pro-

tocols. In such a proof, a prover P convinces a verifier V of the validity a given

(mathematical) statement. The characteristic property is that although V gets convinced,

she learns nothing of the proof itself. For instance, assume that P knows a satisfy-

ing assignment for a Boolean formula. Using a zero-knowledge proof P can convince

V that the formula is satisfiable without giving away any information on the

V. Niemi, A. RenvalllTheoretical Computer Science 191 (1998) 173-183 181

assignment he knows. As a consequence, V cannot later convince any third party of the

satisfiability.

Our protocol for secure multiparty computation can obviously be modified to obtain

zero-knowledge proofs for satisfiability. P is the only one with secrets, thus he performs

all the necessary operations. P applies the protocol to compute the value of the Boolean

formula using the satisfying assignment. V participates only by watching.

Unfortunately, the instances where zero-knowledge proofs have any significance are

so large that we would need a huge deck of cards. Thus, this property of our protocol

is interesting only from a theoretical point of view. Nevertheless, this example shows

that even complicated cryptographic protocols can be implemented without massive

computing power.

6. How to copy only one card?

The Protocol 3 is a simple method for making copies of two face down cards which

are known to be red and green, but the order is not known. An obvious problem related

to this is the following: is it possible to copy a single card similarly? This is clearly

a more difficult task.

All our protocols are based on the idea of coding information in the order of cards,

hence the problem of copying one card is irrelevant in our setting. However, the

opportunity to produce copies of a single card seems to be a very useful tool in

constructing new protocols. That is the reason why we devote one section to this

problem.

We cannot give a complete and fully satisfactory solution to the problem, but our

next protocol is a partial solution which may be sufficient in some cases. The disad-

vantage of our solution is the possibility that some information about the color of the

card is leaked out. The probability of a leak can be made arbitrarily small but only at

the cost of exponentially increasing the number of cards.

Protocol 6. A protocol for h4 to make k copies of one face down card.

M’s input: A card X and a security parameter s.

(1) A4 constructs a deck U”=(GR)ktl and s decks I$;=(GR)2’ (i= l,...,~).

(2) M computes U’=F(U”) and qI,=F(I$!;) for i=l,...,s.

(3) M constructs decks ~i,=~,,,1~1~.3...~1~,2,+,_, for i=l,..., s.

(4) M constructs a deck W’ =XJ,‘Vit,. . . F&j and computes a random permutation

w of W’.

(5) M computes w = cp(W). If w contains an odd number of green (and red) cards

then M outputs U = U4/U6/ . . . U/ 2k+2. If w has an even number of green cards

then M outputs U = U,lU; . . . U..kf,.

Theorem 3. In the protocol, U =Xk and M learns q(X) only with prob-
ability (l/2)“+‘.

182 V Niemi, A. Renvalll Theoretical Computer Science 191 (1998) 173-183

Proof. Because of the construction method of U” we know that U’ = (YT)k+l. Hence,

it is clear that if X=Y then UjU~...U~k,,=Xk; and if X=r then U4/Ui...
U’ 2k+2 =Xk. Thus, we need to show that X = Y, ifs w has an even number of green

cards.

The deck W is composed of the cards X and U[= Y and the decks vii,. Because

V& = (Zjz)* for some Zi (i = 1,. . . , s), I$, = Zf’. This means that each I$i, consists

of an even number of cards of the same color. Hence, if X = Y then necessarily w

has an even number of both green and red cards. Correspondingly, if X = 7 then the

numbers of green cards and red cards are both odd.

It remains to show that only with a negligible probability A4 learns anything about

q(X). The only possible source of information is in step 5 where M computes

w = cp(W). Clearly, if w consists of only green or red cards, then the color of X

is revealed. This event occurs only if Y =X and each Zi =X. The probability of this

is (1/2)‘+l.

If w has both green and red cards, there is no way to gain any information on q(X).

This can be proved using a straightforward induction. For notational convenience we

denote e(w) = ([WI,, 1~1,); i.e. Ii/(w) is the Parikh vector of w telling us the number

of gs and TS in w. Because of the random permutation of step 4 all the information

leaked out by w is already contained in $(w).

If s = 0 then the claim is quite trivial, since the only case to consider is $(w) = (1,1)

and there are two equally probable cases. Thus, assume that s > 0 and denote

t,b(w)=(i,j). The deck w consists of 2Sf* cards. If i > j then we can conclude that

&is, = G*‘. Removing 2’ green cards from w takes us essentially back to the case of

s - 1 with the Parikh vector (i - 2”,j). As neither component is zero, the claim follows

from induction hypothesis. Obviously, the case where i < j is symmetric, hence assume

that i =j. There are only two possibilities: either l&, = G*’ and the rest cards are red,

or vice versa. These cases are equally probable and the claim follows again. 0

7. Conclusions and further research

We have shown that it is possible to compute any Boolean function by using only

red and green playing cards in such way that during the computation each participant

learns nothing else but the final output. The number of cards is a linear function of

the number of gates in a circuit corresponding to the computed function. Although this

rate of growth is mild, it is important to try to minimize the number of cards needed in

computing some specific functions that may have practical applications. More efficient

protocols might use, e.g. more colors than just two.

Our protocols are based on the assumption that cyclic permutations of a deck are

indistinguishable or symmetric. In group-theoretical terms it can be said that we op-

erate in a cyclic symmetry group. A possible generalization is to move into dihedral
groups. Then also a deck and its mirror image are indistinguishable. This case has also

a physical interpretation.

V. Niemi, A. RenvalllTheoretical Computer Science 191 (1998) 173-183 183

Consider a “necklace” containing small identical boxes hanging from a string. Tiny

balls of different colors can be put inside the boxes. Now it is possible to rotate the

string corresponding to cutting of the deck and we may also turn the necklace upside

down which is a new kind of shuffling operation.

References

[l] J. Benaloh, Verifiable secret-ballot elections, Ph.D. Thesis, Yale University, Technical Report 561, 1987.

[2] B. den Boer, More efficient match-making and satisfiability; the five card trick, Proc. EUROCRYPT’89,

Lecture Notes in Computer Science, vol. 434, Springer, Berlin, 1990, pp. 208-217.

[3] D. Chaum, I. Damgard, J. van de Graaf, Multiparty computations ensuring privacy of each party’s input

and correctness of the result, Proc. CRYPT0’87, Lecture Notes in Computer Science, vol. 293, Springer,

Berlin, 1988, pp. 87-119.

[4] C. Crepeau, J. Kilian, Discreet solitary games, Proc. CRYPT0’93, Lecture Notes in Computer Science,

vol. 773, Springer, Berlin, 1994, pp. 319-330.

[5] V. Niemi, A. Renvall, How to prevent buying of votes in computer elections, Proc. ASIACRYPT’94,

Lecture Notes in Computer Science, vol. 917, Springer, Berlin, 1995, pp. 164-170.

[6] H. Nurmi, A. Salomaa, L. Santean, Secret ballot elections in computer networks, Comput. Security 10

(1991) 553-560.

