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Abstract 

Many simple calculations can be done easier without computers than by using them. We 
show that the same holds for secure multiparty computations if the function to be computed is 
simple enough. Our starting point is an observation of Bert den Boer: a multiparty computation 
of a logical AND-gate can be performed by five simple playing cards. We show that by using 
a reasonable amount of cards many useful functions can be computed in such a way that each 
input stays private. 

1. Introduction 

Increasingly large amounts of computations are taken care of by computers, but other 

computing methods also seem to survive. A pencil and a piece of paper are still more 

easily accessible than a computer. It is also clear that many simple calculations can be 

made much easier without computers. 

On the other hand, people often take a prejudiced attitude in regard to the 

use of computers. By experience they learn that, for instance, automatic teller ma- 

chines very seldom miscalculate, but the attitude does not totally vanish. This fact 

is one obstacle that prevents expansion of the practical use of cryptographic proto- 

cols. Even if a protocol is provably secure against all cheaters, people are afraid 

that their own personal computers may not f$ction exactly as they assume them 

to do. 

For example, let us consider a system for computerized elections (see, e.g. [l, 5,6]). 

It might be the case that every transmission between the PC of a user and the system 

is perfectly secure and no information about the voting strategy of the user is leaked 
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out. Still, the user is not easily convinced that all inputs given by the keyboard are 

not saved into some hidden files where computer experts can read them. 

There are also other reasons in favor of constructing computation methods that do 

not depend on computers: electricity might be cut in a critical moment, computers also 

break down occasionally, computers are not very cheap, a network of PCs is not easily 

portable, etc. Sometimes it is also possible to find computing methods that are more 

convenient than the use of computers. 

We investigate secure multiparty computations (see, e.g. [3]). One of their typical 

features is that the function to be computed collectively by the participants is itself 

relatively easy to compute, but heavy computations are needed to hide the input of 

each participant from the others. For instance, assume that a small group wants to 

take a secret vote in a meeting. Surely, it is usually much easier to construct ballots 

and a ballot box than to set up a computer voting protocol even if computers are 

available. Using this traditional method, individual inputs are hidden by shuffling them 

in a box. Unfortunately, this hiding method works only for a very limited number of 

functions. 

Our purpose is to construct respective physical hiding methods for a larger class of 

functions. The starting point is an elegant protocol of Bert den Boer [2]: five simple 

playing cards are used in order to compute the value of logical AND. The secrecy 

of inputs is essentially guaranteed by “cutting the deck” a couple of times. Although 

AND is a very simple function, it has several meaningful applications. In addition to 

the one given in [2], let us mention the following one. Two parties are trying to make 

a contract (for example, the parties could be an employer and a labor union). If the 

negotiations do not succeed an arbitrator might be called to propose a compromise. For 

tactical reasons, the parties do not want to tell immediately (not even to the arbitrator) 

whether or not they accept the proposal. Instead, a card protocol is used to decide 

whether or not both parties accept the proposal. 

We generalize the five-card trick of [2] to cover any Boolean function. The number 

of cards needed grows in the worst case linearly with respect to the number of gates in 

the circuit that corresponds to the function. It is not very easy to handle a deck of one 

thousand cards but several useful functions can be computed with a far smaller deck. 

The time complexity of the protocol also grows linearly with respect to the number of 

gates. 

In [4], Claude Crepeau and Joe Kilian use similar methods to obtain a solitary card 

protocol for selecting a random permutation with no fixed points. In fact, their paper 

includes all the necessary tools for a general protocol for multiparty computations. The 

difference to our work is that we use a smaller alphabet (i.e. a smaller number of 

different cards), and our protocol is also more efficient. 

One big problem in computing with cards is the fact that it is not easy to make 

identical copies of a hidden card. Suppose you have several identical cards of each 

type available. One card is on the table with face down. How to replace this one card 

with two similar ones without revealing the type of the original card? In the final part 

of the paper we give a partially successful answer to the problem. 
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2. The basic protocol 

We first consider a two-party cryptographic protocol for evaluating the value of 

a binary AND-gate. In [2] the situation is illustrated as follows. Alice and Bob have 

just met and they want to find out whether they have some particular mutual inter- 

est. However, they are both reluctant to show their interest unless they know that the 

other one is also interested. Unfortunately, no third party trusted by both of them is 

available. 

More formally: Alice has a secret bit Q and Bob has a secret bit b. They want to 

find out the conjunction a A b of these bits, but they are not ready to reveal their own 

secret bits. In other words, if a = 0, Alice should not be able to find out b, and vice 

versa. (Of course, if a = 1 then Alice knows that b = a A b). How to proceed? 

In [2], den Boer gives a protocol to solve the problem physically. He uses a deck 

of five cards. Two cards are red and three cards are green, for example. Cards with 

the same color are identical and, moreover, the back side of each card (red and green) 

is identical. We give a brief description of the protocol. 

2.1. The “jive-card trick” 

Initially, both Alice and Bob have one red and one green card. The remaining green 

card is put face down on a table. Alice then puts her two cards face down on top of 

the initial green card. The order of her cards (which Bob should not see) is determined 

by her secret bit a: if a = 0 then the green card is put on top, if a = 1 then the top card 

is red. Now Bob puts his cards at the bottom of the stack. Bob uses a complementary 

rule when determining the order of his cards: the red card at the bottom means that 

b = 1, and the green card at the bottom means b = 0. 
After the five-card stack is constructed, Alice and Bob take turns “cutting” the cards, 

i.e. they rearrange the stack with a random cyclic permutation not known to either of 

them. When both are satisfied, they display the cards. It is easy to see, that the red 

cards are next to each other, if and only if, a = b = 1 (here we have the cyclic order of 

cards in mind). Moreover, the other three possibilities are indistinguishable, since the 

corresponding stacks of cards are cyclic permutations of each others. Thus, using this 

“trick”, Alice and Bob can settle their problem without the fear of getting embarrassed. 

It is clear that we can compute some other binary Boolean functions analogously. 

For example, the result of an OR-gate is obtained by just reversing the commitment 

rule for both Alice and Bob. As a consequence, the result is 0 iff the two red cards 

are next to each other. 

3. Notations 

In the following, we consider cards as elements of an alphabet A and ordered sets 

of cards (i.e. decks) as words over A. The topmost card is the first letter of the word, 
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etc. If w E A* we denote w=wr . ..w.,, where wi E A. We define functions fi by 

f;:A*+A*, f;:(W)=Wi+l...WnWl...Wi (i=1,2 ,..., TV). 

In other words, if w is a deck of cards, h(w) is obtained by moving the i topmost cards 

to the bottom of the deck. We also adopt the notation (w) = {f;:(w) 1 i = 1,2,. . . , n); 

i.e. (w) is the set of cyclic permutations of w. 

Our deck of cards consists of two different kinds of cards: green ones and red 

ones. The cards have two possible states: they are either “face down” or “face up”. 

Therefore, we define two sets: 17 = {G, R} corresponding to the face down cards, and 

C = {g, r} corresponding to the face up cards. Using this notation we have A = II U Z. 

For variables corresponding to the face down cards we usually use capital letters 

X, Y,. . . , and small letters x, y,. are used with face up cards. Similarly, we use vari- 

ables U, V, . . (resp., u, u, . . .) f or a deck of face down (resp., face up) cards. We also 

denote G=R, R=G, g=r and F=g. 

Let cp be the function which corresponds to turning a face down card face up: 

q(G) = g and q(R) = r. We extend cp to a morphism cp : II* + C* in an obvious way. 

The cryptographic assumption we use in our protocols is that computing cp is possible 

only if all participants co-operate. (Of course, anyone in the possession of cards can 

view a face down card, but the others will notice it.) 

A commitment of a bit 0 is an element Do = GR E U2 and a commitment of a bit 1 

is Di = RG E l7’. Denote D = {DO, 01) and define the decryption morphism 6 : D* + 

{O,l}* by b(Db)=b (by {O,l}). H ence, a commitment of a bit is a pair of face 

down cards, where the one card is green and the other card is red. The order of cards 

determines the bit in question, similarly to the “five-card trick”. We use Greek letters 

a, j?, _ . . to denote commitments. 

Finally, we formalize our main cryptographic tool: cyclic shulIling of a deck of face 

down cards. Cyclic shuffling of a deck W corresponds to choosing a random element 

from (W). Denote this randomized algorithm by F 

F(W)=J;:(W), where i&(1 ,..., IWl}. 

We assume that it is possible to compute F in such way that no one learns the index i. 

(This is acceptable, since, in practice, anyone is able to cut a deck of cards in such a 

way that the others cannot observe the exact point of the cut. F can then be computed 

by letting each participant to cut the deck in turns). 

To get familiar with our notation, we redescribe the basic protocol for AND, given 

in the previous section. Although the protocol has only two participants, we found it 

convenient to introduce also a “middleman” M. Whatever M does, M does it publicly. 

In other words, both A and B know everything that M knows. For example, if M 

computes q(X) then both A and B find out the value. But if A or B computes it, the 

other will not learn it. In practice, either A or B or both of them together may take 

the role of M. 

First, we give a protocol for encrypting secret bits. 
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Protocol 1. A bit commitment protocol. 

A’s secret input: A bit a. 
(1) M gives A two cards LX” = GR. 
(2) A computes LX’ = F(a”) and a’ = &a’). 

i 

CI’ 
(3) A outputs LX= 

if a’=a, 

fi(cc’) if a’= 1 - a. 
It is clear that in the protocol 6(a) = a and that B cannot figure out the bit a. 

The five-card trick can now be described as follows: 

Protocol 2. A protocol for A and B for computing the conjunction of their secret 
bits. 

A’s secret input: A bit a. 
B’s secret input: A bit b. 

(1) A and B encrypt their secret bits by CY and fl (using Protocol 1 ), and give them 

to M. 
(2) M computes y=F(aGfi(j3)). 

(3) M outputs 0, if q(y) E (rgrgg), and M outputs 1, if q(y) E (rrggg). 

4. Computing AND, NOT and OR in encrypted form 

The goal of this paper is to construct a “card protocol” for any Boolean function. 

It seems to be a reasonable approach to build such a general protocol from protocols 

for simple Boolean operators. These basic protocols should produce a commitment of 

the output bit, so that it can later be used as input without knowing the value of the 

bit it encrypts. 

In some cases the same input is needed several times in the computation. As our 

physical card commitments are unreusable, we also need a protocol for copying com- 

mitments (without viewing the cards). The following quite natural protocol has also 

been given in [4]. 

Protocol 3. A protocol for generating k copies of a bit commitment CI E D without 
giving away any information on 6(a). 

M’s input: A bit commitment CI =Xx ED. 

(1) M constructs a deck U = ( GR)k+‘. -- 
(2) M computes U’=F(U)=(YY)k+l and sets V=ala2U{U~==XXYY. 
(3) M computes u = cp(F(V)). 

(4) M Outputs w = 1 wJLU~(k+l) if v E (grgr), 

f,(U,U,‘. . . U;(k+l)) if v E (grrg). 
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Theorem 1. W = ak =(Xx)“; and no information on 6(a) is revealed 

-- 
Proof. If Y =X (i.e. if U’ = (Xz)k”) then we have V =XXXX. From this it follows 

that cp(F( V)) E (grgr) and in step 4 we choose W = UiU4/. . . U.ck+lJ =(Xx)“. Corre- 

spondingly, if Y =x then U’ = (zX)kf’ and V =XXXX. Hence, cp(F( V)) E (grog), 

and therefore we choose W = fi (Ul C.Ji . . . U:(k+,j ) = f~((xX)~) = (XX)k. Thus, in both 

cases we have W = ak, as desired. 

It remains to show that no information on X (i.e. 6(a)) leaks during the protocol. The 

only possible source of information is in step 3, where we compute v = cp(F( V)). But 

from D we can only conclude whether or not X = Y. This still leaves the cases X = G 

and X = R equally probable, since Y is totally random and it will not be revealed. 0 

The total number of cards needed in this protocol is 2k+4, four of which are “free” 

after the protocol. It should be noted that while constructing k copies, we loose the 

original commitment. Thus, there is no sense in producing only one copy. 

In the following, we assume that all formulae are composed of AND, NOT and OR 

operators only. We give a protocol for each operator. 

NOT 
Computing NOT in encrypted form is trivial. Obviously, if CI E D, then S(fi (ix)) = l- 

6(a). In other words, it is enough to change the order of the commitment cards. To 

preserve the original commitment we need to take first two copies of CI, as explained 

above. 

AND 

The AND protocol described in Section 3 is not suitable for our purposes: we need 

the output in encrypted form. In this section we modify the protocol to obtain the 

desired properties. 

Protocol 4. A protocol for A4 to evaluate the outcome of an AND gate in encrypted 

form. 

M’s input: Two bit commitments CI =X?? and p = Yr. 

(1) M computes W = 01~ = (Xz)2 and W’ = /I2 = ( Yr)2 by using protocol 3. -- 
(2) M constructs a deck U= FQ W2GW2’F!5’W3W4GWq’W3’=(XXGYY)2. 
(3) M computes U’=F(U) and x=q(U,‘). 
(4) If x = g then A4 sets U = U’ and goes back to step 3. (Of course, the topmost 

card U,’ is first reset face-down; i.e. M computes q-‘( U,‘)). 
If x = r then M computes v = cp(F( UiUi)). 

(5) If v = gg then M outputs y = U,bU~. 
If v E {gr, rg} then A4 outputs y = U:Ul. 

Theorem 2. In the protocol given above, 6(y) = 6(a)l\6(/3), but no further information 
on 6(a), S(p) or 6(y) is revealed. 
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Proof. Because of the construction of the word U in step 2 we know that q(U) 

=U 2, where u=cp(aGfi(fl)). Thus, also in step 3, ~p(U’)=u’~, where U’E (u). After 

step 4 we know that ui = r. Now we have only four possible cases: u’ = rrggg (outcome 

is 1) or U’ =rgrgg (0) or u’=rggrg (0) or U’ =rgggr (1). A4 has no information of 

which alternative is the correct one. However, we notice that if uiuj = gg then U,‘,Ud 

(and UlU,‘) is a commitment of the outcome. Correspondingly, if uiu: E (gr) then 

U7/Ui (and U~U~) is a commitment of the outcome. In step 5 we test which case is 

in question (by using cards Ui and Ui) and determine the output according to it. 

It remains to be shown that no unintended information on the commitments leaks 

during the protocol. This is quite obvious. After step 4 we know that either U’ = 

(RGGZz)2 or U’ = (RZzGG)2. But, because we do not know whether Z = G or Z = R, 
this amounts to nothing. 0 

In addition to the four input cards we need eight more cards to perform the protocol: 

First, we need six cards in taking two copies of c(. Four cards are free after the copying 
- thus, only two more cards are needed while copying j3. Again four cards (two red 

and two green cards) are ready for reuse, and the two green cards are used as middle 

cards in step 2. After the protocol, 10 of the 12 cards involved are free and two cards 

encrypt the outcome. 

Again, if we need the original commitments later, we should take a copy of them. 

This can be done before we perform the protocol, but it is more convenient to do it 

during the protocol. In step 1 we need to take copies of the inputs anyway, so without 

any trouble we can take one copy more. Then, however, we need four more cards - 

thus the necessary number of cards increase up to 16. 

Our AND protocol is probabilistic. In step 3 we keep shuffling the deck and looking 

up the color of the topmost card, until the card is red. Because four of the ten cards 

are red, the expected number of loops is 2;. We have found a solution to avoid this 

minor problem. However, the solution is much more complicated and the number of 

necessary cards is 44. We omit the solution here. 

OR 
Because p V q = -(up A lq), it is easy to modify the AND protocol to obtain a pro- 

tocol for OR. The only changes are in step 2, where now A4 constructs U = (f~(c~)Gfi)~, 

and in step 5, where the final output is reversed. 

It would be equally easy to construct a protocol for the Sheffer function NAND. It 

is, however, more convenient to construct more complicated computations using AND, 

NOT and OR than by using NAND. 

5. Computing any Boolean function 

In this section we give a general protocol for computing any Boolean function. The 

protocol is straightforward: first the participants commit to their secret bits and then 
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the value of the function (circuit) is evaluated proceeding operator by operator (gate 

by gate) using the protocols of the preceeding section. The final commitment obtained 

from the last gate is then revealed. We do not give a proof or a detailed description 

of the protocol, as they should be obvious after the preceeding section. 

Protocol 5. A protocol to compute any Boolean function composed of AND, NOT 

and OR gates in encrypted form. 

M’s input: A Boolean circuit with S gates and commitments of the N input bits. 

(1) A4 prepares a deck of ten cards U = (GR)5, and additionally for each gate Gi, 

M reserves a pair of cards pi = GR. 

(2) M computes the value of each Gi in proper order using the protocols of the 

preceding section. In order to do this M uses the input commitments, together 

with fii and U. 

(3) M computes 6(y), where y is the commitment obtained from the computation 

of the final gate. 

Obviously, the number of cards needed in this protocol is 2(N + 5’) + 10. After the 

protocol we still have a commitment of each input bit and the output bit of every 

gate. In most cases this is not necessary and hence the actual number of cards needed 

is usually lower. A better estimation on the necessary number of cards is obtained 

by counting the maximum number of bits that need to be remembered simultaneously 

during the protocol. If this number is denoted by P, then we can manage with 2P + 10 

cards. 

For example, if our function is the kary AND (i.e. f(bi,. ..,bk)= bl ~...Abk) then 

at each moment we need to remember only two bits. First bl and b2, then bl A b2 

and b3, then bl A b2 A b3 and b4 etc. According to the formula we can manage with 

14 cards. It can be shown that, in this special case, only 12 cards are needed (the same 

number as with ordinary AND with two input bits). 

The AND function is an example of a threshold function. The value of a threshold 

function is fully determined by the number of 1s (or OS) among the input bits. It is 

quite easy to see that when computing a threshold function with N input bits, only 

N+2 bits need to be remembered at each moment. Thus, N people can make a majority 

decision using a deck of 2N + 14 cards in such way, that the exact number of yes and 

no votes will not be revealed. 

5.1. Zero-knowledge with cards 

Zero-knowledge proofs are important building blocks in many cryptographic pro- 

tocols. In such a proof, a prover P convinces a verifier V of the validity a given 

(mathematical) statement. The characteristic property is that although V gets convinced, 

she learns nothing of the proof itself. For instance, assume that P knows a satisfy- 

ing assignment for a Boolean formula. Using a zero-knowledge proof P can convince 

V that the formula is satisfiable without giving away any information on the 
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assignment he knows. As a consequence, V cannot later convince any third party of the 

satisfiability. 

Our protocol for secure multiparty computation can obviously be modified to obtain 

zero-knowledge proofs for satisfiability. P is the only one with secrets, thus he performs 

all the necessary operations. P applies the protocol to compute the value of the Boolean 

formula using the satisfying assignment. V participates only by watching. 

Unfortunately, the instances where zero-knowledge proofs have any significance are 

so large that we would need a huge deck of cards. Thus, this property of our protocol 

is interesting only from a theoretical point of view. Nevertheless, this example shows 

that even complicated cryptographic protocols can be implemented without massive 

computing power. 

6. How to copy only one card? 

The Protocol 3 is a simple method for making copies of two face down cards which 

are known to be red and green, but the order is not known. An obvious problem related 

to this is the following: is it possible to copy a single card similarly? This is clearly 

a more difficult task. 

All our protocols are based on the idea of coding information in the order of cards, 

hence the problem of copying one card is irrelevant in our setting. However, the 

opportunity to produce copies of a single card seems to be a very useful tool in 

constructing new protocols. That is the reason why we devote one section to this 

problem. 

We cannot give a complete and fully satisfactory solution to the problem, but our 

next protocol is a partial solution which may be sufficient in some cases. The disad- 

vantage of our solution is the possibility that some information about the color of the 

card is leaked out. The probability of a leak can be made arbitrarily small but only at 

the cost of exponentially increasing the number of cards. 

Protocol 6. A protocol for h4 to make k copies of one face down card. 

M’s input: A card X and a security parameter s. 

(1) A4 constructs a deck U”=(GR)ktl and s decks I$;=(GR)2’ (i= l,...,~). 

(2) M computes U’=F(U”) and qI,=F(I$!;) for i=l,...,s. 

(3) M constructs decks ~i,=~,,,1~1~.3...~1~,2,+,_, for i=l,..., s. 

(4) M constructs a deck W’ =XJ,‘Vit,. . . F&j and computes a random permutation 

w of W’. 

(5) M computes w = cp( W). If w contains an odd number of green (and red) cards 

then M outputs U = U4/U6/ . . . U/ 2k+2. If w has an even number of green cards 

then M outputs U = U,lU; . . . U..kf,. 

Theorem 3. In the protocol, U =Xk and M learns q(X) only with prob- 
ability (l/2)“+‘. 
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Proof. Because of the construction method of U” we know that U’ = (YT)k+l. Hence, 

it is clear that if X=Y then UjU~...U~k,,=Xk; and if X=r then U4/Ui... 
U’ 2k+2 =Xk. Thus, we need to show that X = Y, ifs w has an even number of green 

cards. 

The deck W is composed of the cards X and U[ = Y and the decks vii,. Because 

V& = (Zjz)* for some Zi (i = 1,. . . , s), I$, = Zf’. This means that each I$i, consists 

of an even number of cards of the same color. Hence, if X = Y then necessarily w 

has an even number of both green and red cards. Correspondingly, if X = 7 then the 

numbers of green cards and red cards are both odd. 

It remains to show that only with a negligible probability A4 learns anything about 

q(X). The only possible source of information is in step 5 where M computes 

w = cp( W). Clearly, if w consists of only green or red cards, then the color of X 

is revealed. This event occurs only if Y =X and each Zi =X. The probability of this 

is (1/2)‘+l. 

If w has both green and red cards, there is no way to gain any information on q(X). 

This can be proved using a straightforward induction. For notational convenience we 

denote e(w) = ([WI,, 1~1,); i.e. Ii/(w) is the Parikh vector of w telling us the number 

of gs and TS in w. Because of the random permutation of step 4 all the information 

leaked out by w is already contained in $(w). 

If s = 0 then the claim is quite trivial, since the only case to consider is $(w) = (1,1) 

and there are two equally probable cases. Thus, assume that s > 0 and denote 

t,b(w)=(i,j). The deck w consists of 2Sf* cards. If i > j then we can conclude that 

&is, = G*‘. Removing 2’ green cards from w takes us essentially back to the case of 

s - 1 with the Parikh vector (i - 2”,j). As neither component is zero, the claim follows 

from induction hypothesis. Obviously, the case where i < j is symmetric, hence assume 

that i =j. There are only two possibilities: either l&, = G*’ and the rest cards are red, 

or vice versa. These cases are equally probable and the claim follows again. 0 

7. Conclusions and further research 

We have shown that it is possible to compute any Boolean function by using only 

red and green playing cards in such way that during the computation each participant 

learns nothing else but the final output. The number of cards is a linear function of 

the number of gates in a circuit corresponding to the computed function. Although this 

rate of growth is mild, it is important to try to minimize the number of cards needed in 

computing some specific functions that may have practical applications. More efficient 

protocols might use, e.g. more colors than just two. 

Our protocols are based on the assumption that cyclic permutations of a deck are 

indistinguishable or symmetric. In group-theoretical terms it can be said that we op- 

erate in a cyclic symmetry group. A possible generalization is to move into dihedral 
groups. Then also a deck and its mirror image are indistinguishable. This case has also 

a physical interpretation. 
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Consider a “necklace” containing small identical boxes hanging from a string. Tiny 

balls of different colors can be put inside the boxes. Now it is possible to rotate the 

string corresponding to cutting of the deck and we may also turn the necklace upside 

down which is a new kind of shuffling operation. 
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