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1. Groups and Rings

Definition 1.1. The pair G,+ with

+ : G×G → G

is a group when + is an associative and for all a, b ∈ G there exists a unique x solving
a+ x = b.1 If + is commutative the group is called abelian.

Example: The naturals2 N are not a group for the operation addition, but adjoining
the new elements 0 and a −x for every x, we have the integers3 Z which are a group
with the operation addition.
Example: The naturals N are not a group for the operation multiplication, but
adjoining the new elements 1/x for every x, we arrive at the rationals except for
zero, which are a group with the operation multiplication.

Definition 1.2. The triple G,+,× is a ring when G,+ is an abelian group and

× : G×G → G

Date: 27 October 2013.
1I might need one more axiom, see the appendix.
2The set of natural numbers is defined as N = {1, 2, 3, . . . }
3The set of integers as defined as Z = { 0, 1,−1, 2,−2, . . . }
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is an associative operation for which the distributive law holds,

∀a, b, c ∈ G, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

Example: The integers are a ring with the typical and normal operating of addition
and multiplication. Note the additional properties that the integers have an iden-
tity operator for multiplication and multiplication is commutative. This is called a
commutative ring with unit.

Definition 1.3. For integer a, b ∈ Z, a divides b, written a | b, if and only if there
exists an integer k ∈ Z such that ak = b.

Example: The integers with multiplication Z,× is not a group. For a given a, b,
equation a x = b is solvable over Z only if a | b.
Theorem 1.1. Suppose a, b are integers and the integer c divides a and b. Then c
divides all linear combinations of a,

∀s, t ∈ Z, c | (s a+ t b).

Proof: The reader is encouraged to proof this for themselves. By the hypothesis,
there exists ka, kb ∈ Z such that a = ka c and b = kb c. Hence,

(s a+ t b) = (s ka c+ t kb b) = c (s ka + t kb).

□

Definition 1.4. Given a ring R,+,×, an ideal is a subset I ⊆ R that is a subgroup
and conducts all of R into I, RI ⊆ I.

Motivation: An ideal is the kernel of any ring homomorphism to a quotient ring.
As such, the zero must posses the power of the annihilator for multiplication.

Definition 1.5. Given a ring R,+,× and a subset G ⊆ R of elements of S, the ideal
generated by S, I = ⟨G⟩ is the minimal ideal containing G. The elements of G are
said to be the generators of the ideal. An ideal that can be generated by a single
generator is called a principal ideal.

Example: Given an integer a, the set of all multiples of a is an ideal,

⟨a⟩ = { k a | k ∈ Z }.
The set of even integers is an ideal. The set of odd integers is not an ideal.

Theorem 1.2. In the ring of integers, all ideals are principal ideals.

This requires the Euclidean algorithm to prove. As a motivation, this algorithm uses
repeated division to find the greatest common divisor among a set of elements. If
the ideal is generated by this set, it is also exactly generated by the greatest common
divisor.
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Example: Given the unit interval [0, 1] the set of all subsets of [0, 1] is a ring with
addition being set exclusive or and multiplication being set intersection. The zero is
the empty set ∅ as S ⊕ ∅ = S; and the one is interval [0, 1], as S ∩ [0, 1] = S, for all
S ⊂ [0, 1].
In this example divisibility is set inclusion, s |u when ∃t, s ∩ t = u.

2. The Euclidean Algorithm

It will turn out that generators form ideals by forming all possible linear combinations
with the generators. For two generators in the ring of integers,

⟨ a, b ⟩ = { s a+ t b | s, t ∈ Z }.
All these integers are necessarily in the ideal, as they are needed to be a subring, and
the are also sufficient. This comes down to solving for an x in the ideal the equation
a+ x = b where a and b are in the ideal.

Theorem 2.1. For all a, b ∈ Z in the ring of integers,

(1) ⟨ a, b ⟩ = ⟨ b, a ⟩.
(2) ⟨−a, b ⟩ = ⟨ a, b ⟩.
(3) ⟨ a, b ⟩ = ⟨ a− b, b ⟩.
(4) ⟨ a, b ⟩ = ⟨ b, r ⟩ where a ≥ b > 0 and r is the remainder of a÷ b.

Proof. The first two facts are obvious. For the third, the computation,

i a+ j b = i a− i b+ (i+ j) b = i (a− b) + (i+ j) b,

implies that anything in ⟨ a, b ⟩ is in ⟨ a− b, b ⟩, and vice a versa. For a ≥ b > 0, write
a = q b+ r and apply fact three q times,

⟨ a, b ⟩ = ⟨ a− q b, b ⟩ = ⟨ r, b ⟩ = ⟨ b, r ⟩.
□

Definition 2.1. Let a, b ∈ Z be positive integers. A common divisor of a and b is
any positive integer c such that c | a and c | b. The collection of common divisors is
ordered by divisibility with a greatest element is called the greatest common divisor.

Definition 2.2. Given integers a and b, define the integer d = (a, b) as d is greatest
common divisor of a and b when a and b are positive integers, and otherwise defined
by (a, b) = (b, a) = (−b, a) and (0, a) for all a, including a equals zero. This d is also
called without confusion the greatest common divisor.

Theorem 2.2 (Bézout’s identity). For a and b in the ring of integers,

⟨ a, b ⟩ = ⟨ d ⟩
where d = (a, b).
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Proof: Starting from ⟨ a, b ⟩, use the above properties to arrange things so that
⟨ a, b ⟩ = ⟨ s0, s1 ⟩ and s0 ≥ s1 ≥ 0.
Let s2 be the remainder of s0 divided by s1. In the case that s1 is not zero, and

repeat this process, getting a sequence of si such that ⟨ si−2, si−1 ⟩ = ⟨ si−1, si ⟩ and
si is the remainder of si−2 divided by si−1.
This process must terminate when sj = 0, in which case we have,

⟨ a, b ⟩ = ⟨ sj−1, 0 ⟩ = ⟨ sj−1 ⟩.
Since a, b ∈ ⟨ sj−1 ⟩, sj−1 | a, b. So sj−1 | (a, b).

Note that by the construction of sj−1, there exists integers s and t such that,

sj−1 = s a+ t b,

hence any common divisor of a and b divides sj−1. Therefore sj−1 = (a, b), the
greatest common divisor of a and b. □
The above proof is an algorithm to arrive at integers s and t such that (a, b) = s t+t b.
This is very valuable. It gives the value of (a, b) but also expresses that value as a
linear combination of a and b.
Note well: In general, this process of reduction by repeated division need not end
with a zero. This would be for non-principal ideals. For instance, in the ring of
Q[x][y], polynomials in x and y with rational coefficients, then ⟨x, y ⟩ ends with y
being the remainder of x when divided by y, and x being the remainder when y is
divided by x.
Terminology: The algorithm is called the Euclidean algorithm, and that it works in
the ring of integers makes the ring of integers an Euclidean domain. The consequence
of being an Euclidean domain is that every ideal is a principal ideal. When this is
true, as it is for the integers, the ring is a principal ideal domain.

Theorem 2.3. The Euclidean algorithm is a polynomial time algorithm for solving
Bézout’s identity. That is, given integers a and b with greatest common divisor (a, b),
calculate integers s and t such that,

(a, b) = s a+ t b.

Proof: A ploynomial algorithm runs with the number of steps O(nc) for some integer
c and n the problem size. The problem size here is the number of bits needed to
write down the numbers a and b.
Not that each to steps the larger of the values is lessened by at least half. That is,
one bit is lost in each two iterations, and each iteration is work polynomial in size
(doing division). This then multiplies the per iteration work by the problem size,
keeping the overall work polynomial. □
This is a worst case argument. The worse case time is required when a and b are
neighboring Fibonacci numbers.
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3. Modular Arithmentic

Definition 3.1. Let R,+,× be a ring, and I ⊂ R an ideal in the ring. A coset is
defined for r ∈ R as,

r + I = { r + i | i ∈ I }

Theorem 3.1. Notation as above, two cosets are either identical or disjoint.

Proof: If cosets a + I and b + I intersect, then there are ia, ib ∈ I such that
a+ ia = b+ ib. Then for any s ∈ a+ I,

s = a+ is = (b+ ib − ia) + is = b+ (ib + is − ia) ∈ b+ I,

because I is a group. Likewise, for any s ∈ b + I, then s ∈ a + I. Therefore
a+ I = b+ I. □
Note: The cosets partition the ring. The above theorem shows the cosets are
disjoint. For any r ∈ R, r ∈ r + I, since 0 ∈ I. Hence the collection of coset covers
all elements or R.

Definition 3.2. Given a ring R,+,× and an ideal I ⊆ R of the ring, the collection
of cosets is called R modulo I, written R/I.

Example: The collection of cosets Z/⟨m ⟩ is commonly known as the integers mod-
ulo m, denoted Zm. A coset is represented by the smallest positive integer in the
coset, and any integer is mapped to the representative for the coset in which the
element resides.

Theorem 3.2. In the above notation, R/I is a ring. The ring operations in R/I are
imposed upon it by the ring operations in R. The ring homomorphism ϕ : R → R/I
takes each r ∈ R to the coset in which r resides.

Proof: The addition and multiplication operations in R/I are defined by the dia-
gram,

R×R
ϕ,ϕ−−−→ R/I ×R/I

O
y O′

y
R

ϕ−−−→ R/I

by the mechanism,

(a+ I) + (b+ I)
ϕ−1

−−−→ (a+ ia) + (b+ ib)
+−→ a+ b+ i

ϕ−→ (a+ b) + I

and

(a+ I) (b+ I)
ϕ−1

−−−→ (a+ ia) (b+ ib)
×−→ a b+ i

ϕ−→ a b+ I.
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What we are showing is that adding or multiplying representatives or adding any
other element sharing the coset of the representative, gives the same answer. □

4. Units and Fields

Definition 4.1. Given a ring, R,+,× with a unit element 1 such that 1 r = r for
all r ∈ R, those r such that r x = 1 is solvable for x are called units, and is denoted
R∗.

Example: In the ring Z6 of the six elements 0, 1, . . . , 5, the units are 1 and 5. That
the other numbers are not units are show by considering 2 · 3 = 4 · 3 = 0 in the ring
(so inverting any of these would leave an non-zero element equating to zero).
Example: In the ring Z7 every non-zero element is a unit. This is demonstrated by
2 · 4 = 3 · 5 = 6 · 6 = 1.
Example: In the ring Z9 and non-nilpotent element is a unit, where nilpotent means
at a power of the element equals 0.

Theorem 4.1. With the notation of the above definition, R∗ is a group.

Proof The operation × is associative. Let a x = b be an equation with a, b ∈ R∗.
There exists an a′ such that a a′ = 1. There also exists a x = a′ b, and

a x = a (a′ b) = (a a′) b = 1 b = b.

□

Theorem 4.2. Given the ring R,+,× in a principal ideal domain, an ideal ⟨m ⟩ ⊆ R,
and the modular ring ϕ : R → M where M = R/⟨m ⟩. Then

M∗ = {u ∈ M | 1 = (ϕ−1(u),m) in R }.
They are recognized and their inverses in are calculated in polynomial time using
the extended Euclidean algorithm.

Proof: Let u′ ∈ ϕ−1(u). The question of solvability of ux = 1 in M is equivalent to
finding s, t ∈ R such that,

1 = s u′ + tm.

By Bézout’s, this is solvable only if (u′,m) = 1 and the extended Euclidean algorithm
finds such s and t in polynomial time. Then,

ϕ(s u′ + tm) = ϕ(s)ϕ(u′) + ϕ(t)ϕ(m)

= ϕ(s)u+ 0

= s̄ u = ϕ(1) = 1.
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+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 1 x x+ 1

1 1 x x+ 1
x x x+ 1 1

x+ 1 x+ 1 1 x

Figure 1. Arithmetic in the Galois field F4 = F2[x]/⟨x2 + x+ 1 ⟩

Hence s̄ is the sought for x. □

Definition 4.2. The Eulers totient function φ(n) is defined for the integers as the
number of integers between 1 and n such that are relatively prime to n.

Theorem 4.3. With the above notation, |M∗ | = φ(m). In particular, if m is prime,
all but one elements in M is a unit, that missing element being the zero element.

Definition 4.3. Let R,+,× be a ring with unit, and commutative multiplication.
This ring is a field if all non-zero elements are units, R∗ = R \ {0}.

Example: The set of rationals is a field. The reals are a field. The integers modulo
a prime p, Zp, are a field, often denoted Fp.
Example: Consider polynomials with coefficients in F2,

F2[x] =
∑

cix
i.

These are a ring with a commutative multiplication and the unit element 1. By
defining products of x properly, the ring becomes modulo this definition a field,
called a Galois field.
The simplest case is to define x2 = x+1. Create the ideal I = ⟨x2 + x+1 ⟩ and the
result of the homomorphism,

ϕ : F2[x] → F2[x]/I∑
cix

i 7→ c1x+ c0

is a field with 4 elements.
Note that ϕ essentially maps x2+x+1 to 0. This is equivalent to defining the inverse
of x to be x + 1. The inverse of x must be something. No other choice works. The
case of x x = 1 is eliminated as the would result in (x+ 1)(x+ 1) = 0.
The full addition and multiplication tables are provided in Figure 1.

5. Number theory

Theorem 5.1. If integers m and n are relatively prime, (m,n) = 1, then φ(mn) =
φ(m)φ(n).
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Proof: Let c ∈ Z∗
mn. Then there exist s and t such that

1 = s c+ tmn.

Setting t′ = tm, the equation 1 = s c+ t′ n implies ϕn(c) ∈ Z∗
n. Likewise ϕm(c) ∈ Z∗

m.
So we can define the map,

ϕ : Z∗
mn → Z∗

m × Z∗
n

c 7→ ϕm(c), ϕn(c)

We show this map is a set isomorphism.
Injectivity: The individual maps ϕn and ϕm are homomorphisms. So if ϕ(c) = ϕ(c′)
then ϕ(c − c′) = (0, 0). Therefore both m and n divide the difference c − c′ and so
does the least common multiple of m and n. Since the least common multiple of m
and n is the produce mn divided by (m,n) = 1, then mn | c − c′. Hence c = c′. So
the map is injective.
Surjectivity: From (m,n) = 1 find m′, n′ such that,

1 = m′m+ n′n.

Consider c = im′m+ j n′n. Then,

ϕm(c) = ϕm(im
′ m+ j n′ n)

= ϕm(im
′ m) + ϕm(j n

′ n)

= 0 + ϕm(j)ϕm(n
′ n)

= j̄1 = j̄

and likewise ϕn(c) = ī.
Apply this construction to an arbitrary (j̄, ī) ∈ Z∗

m × Z∗
n to show the map’s surjec-

tivity. □

We state this theorem for the integers, as we are concerned with number theory.
However, it works in a general commutative group.

Theorem 5.2 (Generalized Little Fermat). For all g ∈ Z∗
m, g

φ(m = 1.

Proof: Let s =
∏

g∈Z∗
m
g. Then

hφ(m)s = hφ(m)
∏
g∈Z∗

m

g =
∏
g∈Z∗

m

h g =
∏
g∈Z∗

m

g = s.

Now cancel s. □
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6. Appendix: Axioms for groups and rings

The standard definition of a group has as axioms a unique and universal left and
right zero, and commuting inverses. To the single axiom for a group given in the this
note, I believe I must add the additional axiom,

∀a, b ∈ G,∃x : x+ a = b

where x is not necessarily unique.

Theorem 6.1. In a group G,+, the x ∈ G solving a + x = a is universal for all
a ∈ G. The unique value is denoted 0 and is the (additive) identity for the group.

Proof: Given the unique solution to,

a+ 0 = a,

extend to any c ∈ G by solving y + a = c for y. Then,

c+ 0 = y + a+ 0

= y + a

= c

By uniqueness any x solving c + x = c equals 0. Hence 0 is a universal zero for the
group. □

Definition 6.1. Given 0, define the solution to a + x = 0 as the (additive) inverse
of a, denoted −a.

Theorem 6.2. In a group, inverses necessarily commute, a+ (−a) = (−a) + a.

Proof:

(−a) + a = (−a) + a+ 0

= (−a) + a+ (−a) + (−− a)

= (−a) + 0 + (−− a)

= (−a) + (−− a)

= 0

□

Corollary 6.1. The inverse operation is an involution, −− a = a for all a ∈ G.

Proof: Since a + (−a) = −a + a = 0, then a is the unique solution to −a + x = 0.
Therefore −(−a) = a. □

Corollary 6.2. Every a ∈ G commutes with 0, a+ 0 = 0 + a.
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Proof:

0 + a = (a+ (−a)) + a

= a+ (−a+ a)

= a+ 0

□

Theorem 6.3. That there are unique solutions to a+ x = b, for any a, b ∈ G, there
are unique solutions to x+ a = b for any a, b ∈ G.

Notes: We had to assume that there exists solutions to x+a = b. Now with unique
inverses the uniqueness of the solution is confirmed.

Theorem 6.4. Given the ring R,+×, for a ∈ R, a0 = 0a = 0.

Proof:
a0 + a0 = a(0 + 0) = a0

The uniqueness of the solution to a0 + x = a0 implies a0 = 0, for any a in the ring.
Likewise,

0a+ 0a = (0 + 0)a = 0a.

□

Theorem 6.5. Notation as above, for any a, b ∈ R, a(−b) = (−a)b = −ab.

Proof:
ab+ a(−b) = a(b− b) = a0 = 0

The uniqueness of the solution to ab+ x = 0 implies a(−b) = −(ab). Likewise,

ab+ (−a)b = (a− a)b = 0b = 0

□


