
Secure two party computation, an example

Burton Rosenberg

9 June 2003

Introduction

Two parties, A and B, respectively and privately holding values a and b wish to compute f(a, b)
in a manner which reveals as little as possible to the other party. In particular, given the known
result w = f(a, b), A should assign equal likelihood to each element of the set { y | f(a, y) = w }
and B should likewise assign equal likelihood to each element of the set {x | f(x, b) = w }. To do
so, the two parties agree to engage in a protocol. In the honest party model, the parties carry out
the protocol in accordance with the protocol. In the adversarial model the two parties are not
assumed to follow the protocol. We are prepared to accept that the two parties might deviate from
the protocol in order to gain some advantage.

Privacy is defined with respect to a simulation paradigm. Each party as a view consisting of its
private input, its randomness, and the messages received from the other party. The messages sent
to the other party and the final value are entirely determined by this data. The view is a random
variable depending on the other party’s randomness and private input. Privacy for A is achieved
if the random variable,

(x, r, m1, . . . ,mk)

is indistinguishable, perfectly, statistically or computationally, from the output of a probabilistic
polynomial time simulator S(x, f(x, y)) which is provided with the private input and the result
f(x, y) of the joint computation. Privacy for B is defined analogously.

Since x and r are given in the view, and f(x, y) is given to the simulator, indistinguishability is
respect to each x, y pair over the sample space of the contra-party’s randomness. This gives two
facts: that for y and y′ such that f(x, y) = f(x, y′), views are indistinguishable; and that any of
the common views are polynomial time computable. Since S cannot simulate the other party’s
randomness without an assumption about the distribution, we assume that the honest parties
generate randomness by flipping fair coins.

1



Protocol

As example, we consider two party computation of logical or. We will carry out our boolean
operations as arithmetic in F2. Logical or is given by the formula:

∨(a, b) = (a× b) + (a + b)

We therefore have a circuit (of depth 2) which evaluates logical or. Each party has a copy of this
circuit, and will distribute shares of their inputs. The parties will each evaluate the circuit wire by
wire, gate by gate, finally revealing to each other the output shares. The intuitive description of
privacy is that If one of the parties, say A holds a 1 then the result is 1, and party A should learn
nothing of the value held by party B.

The evaluation protocol is given by Oded Goldreich:

http://www.wisdom.weizmann.ac.il/~oded/pp.html.

To evaluate a sum, one uses that the share of a sum is the sum of the shares. To evaluate a
multiplication, however, is more difficult. The parties engage in an exchange in which one party,
say A, proposes four different values, calculated based on the shares it holds, from which B will
select the appropriate value given the shares it holds. Using 1 out of 4 Oblivious Transfer A learns
nothing of the shares held by B and by blinding the calculation by a random value, A prevents B
from learning its shares.

Summary for honest parties:

1. Distribute the circuit;

2. Distribute inputs as shares;

3. Evaluation circuit: for addition, each party evaluates individually on share;

4. Evaluate circuit: for multiplication, a 4,1–OT transfer from A to B with a random masking
bit chosen by party A;

5. Combine output shares.

Privacy

We will justify in concrete terms why the protocol evaluates privately for the example circuit. The
following subscript notation is used for shares: x = xa +xb, for a generic variable x, where A holds
xa and B holds xb. The steps in the computation are given notation:

s = a× b

t = a + b

y = s + t

2



That is, A evaluates the circuit on inputs aa, ba, assigning values to sa, ta, and output ya. Likewise,
B evaluates the circuit on inputs ab, bb, assigning values to sb, tb, and output yb. The result is
y = ya + yb.

Party A flips two coins, ra1, ra2, the first to split a and the second is required for the 4,1–OT. Party
B flips a single coin, rb1, to split b. W.L.O.G., the inputs are split with the communicated share
being the coin value:

aa = a + ra1 ab = ra1,

likewise for b. The result of the OT is to transfer a · b + ra2 to B,

sa = ra2 sb = a · b + ra2

The evaluations of t and y are done by each party separately, ta = aa + ba, and so on. The result
the following dialog between parties:

A B
aa = a + ra1 ra1 → ab = ra1

ba = rb1 ← rb1 bb = b + rb1

ta = aa + ba tb = ab + bb

sa = ra2 a · b + ra2 → sb

yb ← a · b + b + ra1 + ra2 + rb1 yb = sb + tb
ya = sa + ta a + ra1 + ra2 + rb1 → ya

y = ya + yb y = ya + yb

The view for A is then,

a, (ra1, ra2), rb1, (a · b + b + ra1 + ra2 + rb1)

and for B,
b, rb1, ra1, (a · b + ra2), (a + ra1 + ra2 + rb1)

If a = 0 then there can be no privacy for B. However, if a = 1 then the view of A reduces to:

1, (ra1, ra2), rb1, (ra1 + ra2 + rb1)

which obviously discloses nothing about b, and is easily simulated.

If b = 0 then there can ben no privacy for A. However, if b = 1 then the view of B reduces to:

1, rb1, ra1, (a + ra2), ((a + ra2) + ra1 + rb1)
= 1, rb1, ra1, r

′, (r′ + ra1 + rb1)

which obviously discloses nothing about a and is easily simulated.

3


