Axioms | Conjectures |
---|---|
p | q | r r => (p | q) (q & r) => p ~p | q | r | q | r |
p q r | p|q|r | r=>(p|q) | (q&r)=>p | ~p|q|r || q|r ------+-------+----------+----------+--------++---- T T T | T | T | T | T || T T T F | T | T | T | T || T T F T | T | T | T | T || T T F F | T | T | T | F ----------- F T T | T | T | F ---------------------- F T F | T | T | T | T || T F F T | T | F --------------------------------- F F F | F -----------------------------------------Yes, it is a logical consequence.
Axioms | Conjectures |
---|---|
p | q | r r => (p | q) (q & r) => p ~p | q | r | q & (r => p) |
p q r | p|q|r | r=>(p|q) | (q&r)=>p | ~p|q|r || q&(r=>p) ------+-------+----------+----------+--------++--------- T T T | T | T | T | T || T T T F | T | T | T | T || T T F T | T | T | T | T || F T F F | T | T | T | F ---------------- F T T | T | T | F --------------------------- F T F | T | T | T | T || F F T | T | F -------------------------------------- F F F | F ----------------------------------------------No, it is not a logical consequence.
Axioms | Conjectures |
---|---|
p => q ~q | p p | q ~(p & q) | (~q => p) => (q | ~p) |
p q | p=>q | ~q|p | p|q | ~(p&q) || (~q=>p)=>(q|~p) ----+------+------+-----+--------++---------------- T T | T | T | T | F ----------------------- T F | F ------------------------------------------- F T | T | F ------------------------------------ F F | T | T | F -----------------------------Yes, it is a logical consequence.
Axioms | Conjectures |
---|---|
q | p p => q q => (~r | p) r | p |
p q r | r | q|p | p=>q | q=>(~r|p) || p ------+---+-----+------+-----------++-- T T T | T | T | T | T || T T T F | F ----------------------------- T F T | T | T | F ------------------- T F F | F ----------------------------- F T T | T | T | T | F ------------ F T F | F ----------------------------- F F T | T | F ------------------------- F F F | F -----------------------------Yes, it is a logical consequence.
Translate the following problem into 1st order logic:
Suming, Yi, and Yury are students, and are the only three students. If a student works hard then they get a good grade. At least one of the students works hard. Therefore at least one student will get a good grade.Note that they are the "only" three students - you need to think about how to encode that.
student(suming) student(yi) student(yury) ∀X ( student(X) => ( X = suming | X = yi | X = yury ) ) ∀X ( ( student(X) & works_hard(X) ) => gets_good_grade(X) ) ∃X ( student(X) & works_hard(X) ) ∃X ( student(X) & gets_good_grade(X) )