sunny rainy cloudy snowing cold 0.01 0.10 0.04 0.20 hot 0.50 0.05 0.10 0.00what are the probabilities
P(cold v rainy) = 0.01 + 0.10 + 0.04 + 0.20 + 0.05 = 0.40 P(cold|rainy) = 0.10 / 0.15 = 0.666
P(rich|hardworking) = 0.6 P(hardworking) = 0.5 P(rich|richparents) = 0.9 P(richparents) = 0.2 P(hardworking|rich) P(rich|hardworking) * P(hardworking) 0.6 * 0.5 ------------------- = ------------------------------------ = --------- = 1.666 P(richparents|rich) P(rich|richparents) * P(richparents) 0.9 * 0.2
Burglary P(B)=0.001 Earthquake P(E)=0.002 \ / Alarm P(A| B & E)=0.95 P(A| B & ~E)=0.94 P(A|~B & E)=0.29 P(A|~B & ~E)=0.001 / \ JohnCalls P(J| A)=0.90 MaryCalls P(M| A)=0.70 P(J|~A)=0.05 P(M|~A)=0.01calculate (showing your calculations) the probability that John does not call given that there's been a burglary and an earthquake?
P(~J|B & E) = 1 - P(J|B & E) = 1 - ( P(J|A) * P(A|B & E) + P(J|~A) * P(~A|B & E) ) = 1 - ( 0.90 * 0.95 + 0.05 * 0.05 ) = 1 - ( 0.855 + 0.0025 ) = 1 - 0.8575 = 0.1425