| 
X Pan, E Kartal, L G Sanchez Giraldo, O Schwartz,  Brain-Inspired Weighted Normalization for CNN Image Classification, ICLR Workshop: How Can Findings About The Brain Improve AI Systems, 2021.
 
Md Nasir Uddin Laskar, L G Sanchez Giraldo, O Schwartz.
Deep Neural Networks Capture Texture Sensitivity in V2.
Journal of Vision, accepted, 2020.
  
 
HL Radabaugh, J Bonnell, WD Dietrich, HM Bramlett, O Schwartz, D Sarkar, Development and Evaluation of Machine Learning Models for Recovery Prediction after Treatment for Traumatic Brain Injury," 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 2416-2420.
 
 
LG Sanchez Giraldo, Md Nasir Uddin Laskar, O Schwartz.
Normalization and Pooling in Hierarchical Models of Natural Images.
Current Opinion in Neurobiology, 2019.
 
M H Turner, L G Sanchez-Giraldo, O Schwartz *, F Rieke *
Stimulus- and goal-oriented frameworks for understanding natural vision.
Nature Neuroscience, 2019.
  
 
LG Sanchez Giraldo, O Schwartz.
Integrating Flexible Normalization into Mid-Level Representations of Deep Convolutional Neural Networks. Neural Computation, accepted 2019.
  
 
Md Nasir Uddin Laskar, L G Sanchez Giraldo, O Schwartz.
Correspondence of Deep Neural Networks and the Brain for Visual Textures.
arXiv preprint, 2018.
  
 
Z Xie, O Schwartz, A Prasad. Decoding of finger trajectory from ECoG using Deep Learning.
J Neural Eng 2018.
  
 
T Moldwin, O Schwartz, E Sussman. Statistical learning of melodic patterns influences the brain’s response to wrong notes. Journal of Cognitive Neuroscience, 2017.
          
 
M Snow, R C Cagli, O Schwartz. Adaptation in Visual Cortex: a case
for probing neural populations with natural stimuli. F1000, 2017. 
          
 
O Schwartz, L G Sanchez Giraldo. Behavioral and neural constraints on hierarchical representations. Journal of Vision, 2017.
          
 
F Sikder, D Sarkar, O Schwartz, C Thomas. Method for Concurrent Processing of EMG Signals from Multiple Channels for Identification of Spasms, IEEE SPMB Proceedings, 2017.
     
 
Md Nasir Uddin Laskar, L G Sanchez Giraldo, O Schwartz. Deep
learning captures V2 selectivity for natural textures. Computational
and Systems Neuroscience (Cosyne) abstract, 2017.
Abstract.
          
 
L G Sanchez Giraldo, O Schwartz. Flexible normalization in deep 
convolutional neural networks. Computational
and Systems Neuroscience (Cosyne) abstract, 2017.
Abstract.
          
 
M Snow, R C Cagli, O Schwartz. Specificity and timescales of cortical adaptation as inferences about natural movie statistics. Journal of Vision (2016).
          
 
T H Chou, W J Feuer, O Schwartz, M J Rojas, J K Roebber, V Porciatti. Integrative properties of retinal ganglion cell electrical responsiveness depend on neurotrophic support and genotype in the mouse. Experimental Eye Research 145:68-74, 2016.
          
 
R M Symonds, W Lee, A Kohn, O Schwartz, S Witkowski, E S Sussman. Distinguishing Neural Adaptation 
and Predictive Coding Hypotheses in Auditory Change Detection. Brain Topography, 2016.
doi:10.1007/s10548-016-0529-8.
      
 
L G Sánchez Giraldo, O Schwartz. Flexible Normalization
in Deep Convolutional Neural Networks. 15th Neural Computation and Psychology Workshop on
Contemporary Neural Network Models:  Machine Learning, Artificial Intelligence, and Cognition.
(abstract, 2016).
          
 
R C Cagli, A Kohn*, O Schwartz*, Flexible Gating of Contextual Modulation During Natural Vision. Nature Neuroscience 8(11):1648-55, 2015.
          
 The Impact on Mid-level Vision of Statistically Optimal Divisive Normalization. R C Cagli, O Schwartz. Journal of Vision, 13(8):13, 2013.Reprint
 Attention and Flexible Normalization Pools. O Schwartz, R C Cagli. Journal of Vision, 13(1):25, 2013. Reprint
 Attending to Visual Motion: A Realistic Dynamical Bottom-up Saliency-Based Approach.  J F Ramirez-Villegas, O Schwartz, D F Ramirez-Moreno.
Biological Cybernetics 2012. 
 Cortical Surround Interactions and Perceptual Salience Via Natural Scene Statistics. R Coen-Cagli, P Dayan, and O Schwartz. PLoS Computational Biology, 8(3) 2013. e1002405.
 Statistical Models of Linear and Nonlinear Interactions in Early Visual Processing. 
        R Coen-Cagli, P Dayan, and O Schwartz. Advances in Neural Information Processing
        Systems 22, 2009. Preprint (480K, pdf)
 
        Perceptual          Organization in the Tilt Illusion. 
          O Schwartz, T J Sejnowski, and P Dayan. Journal of Vision, 2009. Reprint
 
 
Visuomotor Characterization of Eye Movements in a Drawing Task. 
          R Coen-Cagli, P Coraggio, P Napoletano, O Schwartz,  M Ferraro, G Boccignone. Vision Research, 49, 810-818, 2009.Reprint (pdf)
 
 
Space and time in visual context. O Schwartz, A Hsu,
          and P Dayan. Nature Reviews Neuroscience, 8, 522-535, 2007.Reprint
          (pdf)
 
 
Spike-triggered Neural Characterization. O Schwartz, J W Pillow,
          N C Rust, and E P Simoncelli. Journal of Vision, 2006.Reprint (pdf)
 
 
        Soft
          Mixer Assignment in a Hierarchical Model of Natural Scene Statistics. O Schwartz, T
          J Sejnowski, and P Dayan. Neural Computation, 2006. Reprint
        (pdf)
 
 
A
          Bayesian Framework for Tilt Perception and Confidence. O Schwartz, T
          J Sejnowski, and P Dayan. Advances in Neural Information Processing
          Systems 18, 2006.Reprint
        (pdf)
 
 
Spatiotemporal
          Elements of Macaque V1 Receptive Fields. N C Rust, O Schwartz, J A Movshon,
          and E P Simoncelli. Neuron, 46(6):945-956, June 2005. Reprint
                (pdf)
 
 
        Assignment
          of Multiplicative Mixtures in Natural Images. O Schwartz, T J Sejnowski,
          and P Dayan. Advances in Neural Information Processing Systems 17, 2005. Preprint
                (242K, pdf)
 
 
        Spike
          count distributions, factorizability, and contextual effects in area
          V1. O Schwartz, J R Movellan, T Wachtler, T D.Albright, and T J Sejnowski.  Neurocomputing, Elsevier, 2004. Preprint (168K, pdf)
 
        Spike-triggered
          characterization of excitatory and suppressive stimulus dimensions in
          monkey V1. N C Rust, O Schwartz, J A Movshon and E P Simoncelli. Neurocomputing,
          Elsevier, 2004.Preprint
                (750K, pdf)
 
        Characterization
          of neural responses with stochastic stimuli. E P Simoncelli and J Pillow
          and L Paninski and O Schwartz. In The Cognitive Neurosciences, Ed: M
          Gazzaniga, 3rd edition. MIT Press, 2004.Preprint
                (1.2M, pdf)
 
        Characterizing
          neural gain control using spike triggered covariance. O Schwartz, E
          J Chichilnisky, and E P Simoncelli. Adv. Neural Information Processing
          Systems, v14, pp. 269-276, May 2002. Preprint (544k, pdf
 
        Natural          image statistics and divisive normalization: Modeling nonlinearity and           adaptation in cortical neurons. M J Wainwright, O Schwartz, and E P          Simoncelli. In Probabilistic Models of the Brain: Perception and Neural           Function. eds. R Rao, B Olshausen, and M Lewicki. MIT Press. Spring,          2002. Full          Text (498k, ps.gz) / Full          Text (138k, pdf)
 
        Modeling          Surround Suppression in V1 Neurons with a Statistically-Derived Normalization          Model. E P Simoncelli and O Schwartz. Adv. Neural Information Processing          Systems. v11, May 1999. Full          Text (377k, ps.gz) / Full          Text (102k, pdf)
 
        Modeling          the Precedence Effect For Speech Using the Gamma Filter. O. Schwartz,          J.G. Harris, and J.C. Principe. Neural Networks, 12(3):409-417, 1999.  
        O.           Schwartz, J G Harris, and J C Principe. Modeling the precedence effect           for speech signals. In Computational Neuroscience Trends in Research,          Volume 4, Pages 819-826, 1998.Full          Text (133k, ps.gz
 |