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Table 1 Historical progress toward understanding how the brain works

Elements required for
understanding how the
brain works Behaviorism

Cognitive
psychology

Cognitive
science

Cognitive
neuroscience

Classical
computational
neuroscience

Future cognitive
computational
neuroscience

Data Behavioral ! ! ! ! ! !
Neurophysiological ! ! !

Theory Cognitive ! ! ! !
Fully computationally

explicit
! ! !

Neurally plausible ! ! !
Explanation of real-world tasks

requiring rich knowledge and
complex computations

! ! !

Explanation of how high-level
neuronal populations
represent and compute

!

Backpropagation led to a second wave of interest in neural networks in cognitive science and
artificial intelligence (AI) in the 1980s. In cognitive science, neural network models of toy problems
fostered the theoretical notion of parallel distributed processing (Rumelhart & McClelland 1988).
However, backpropagation models did not work well on complex, real-world problems such as
vision. Models not as obviously inspired by the brain that used hand-engineered representations
and machine learning techniques, such as support vector machines, appeared to provide better
engineering solutions for computer vision and AI. As a consequence, neural networks fell out of
favor in the 1990s.

WHAT IS MEANT BY THE TERM NEURAL NETWORK?

The term neural network originally refers to a network of biological neurons. More broadly, the term evokes a
particular paradigm for understanding brain function, in which neurons are the essential computational units, and
computation is explained in terms of network interactions. Note that this paradigm leaves aside many biological
complexities, including functional contributions of neurochemical diffusion processes, glial cells, and hemodynamics
(Moore & Cao 2008). Although neurons are biological entities, the term neural network has come to be used as
a shorthand for artificial neural network, a class of models of parallel information processing that is inspired by
biological neural networks but commits to several further major simplifications.

Although spiking models have an important place in the computational literature, the models discussed here
are nonspiking and do not capture dendritic computation, other processes within each neuron (e.g., Gallistel &
King 2011), and distinct contributions from different types of neurons. The spatial structure of a neuron is typically
abstracted from and its spiking output is modeled as a real number analogous to the spike rate. The rate is modeled
as a weighted sum of incoming activations passed through a static nonlinearity. Despite, and perhaps also because of,
these simplifications, the neural network paradigm provides one of the most important paths toward understanding
brain information processing. It appears likely that this approach will take a central role in any comprehensive future
brain theory. Opinions diverge as to whether more biologically detailed models will ultimately be needed. However,
neural networks as used in engineering are certainly neurobiologically plausible, and their success in AI suggests
that their abstractions may be desirable, enabling us to explain at least some complex feats of brain information
processing.
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Figure 1
Artificial neural networks: basic units and architectures. (a) A typical model unit (left) computes a linear
combination z of its inputs xi using weights wi and adding a bias b. The output y of the unit is a function of z,
known as the activation function (right). Popular activation functions include linear ( gray), threshold (black),
sigmoid (hyperbolic tangent shown here, blue), and rectified linear (red ) functions. A network is referred to as
feedforward (b,c) when its directed connections do not form cycles and as recurrent (d ) when they do form
cycles. A shallow feedforward network (b) has zero or one hidden layers. Nonlinear activation functions in
hidden units enable a shallow feedforward network to approximate any continuous function (with the
precision depending on the number of hidden units). A deep feedforward network (c) has more than one
hidden layer. Recurrent nets generate ongoing dynamics, lend themselves to the processing of temporal
sequences of inputs, and can approximate any dynamical system (given a sufficient number of units).

critical arguments, upcoming challenges, and the way ahead toward empirically justified models
of complex biological brain information processing.

A PRIMER ON NEURAL NETWORKS

A Unit Computes a Weighted Sum of Its Inputs and Activates
According to a Nonlinear Function

We refer to model neurons as units to maintain a distinction between biological reality and
highly abstracted models. The perhaps simplest model unit is a linear unit, which outputs a
linear combination of its inputs (Figure 1a). Such units, combined to form networks, can never
transcend linear combinations of the inputs. This insight is illustrated in Figure 2b, which shows
how an output unit that linearly combines intermediate-layer linear-unit activations just adds up
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hidden units enable a shallow feedforward network to approximate any continuous function (with the
precision depending on the number of hidden units). A deep feedforward network (c) has more than one
hidden layer. Recurrent nets generate ongoing dynamics, lend themselves to the processing of temporal
sequences of inputs, and can approximate any dynamical system (given a sufficient number of units).

critical arguments, upcoming challenges, and the way ahead toward empirically justified models
of complex biological brain information processing.

A PRIMER ON NEURAL NETWORKS

A Unit Computes a Weighted Sum of Its Inputs and Activates
According to a Nonlinear Function

We refer to model neurons as units to maintain a distinction between biological reality and
highly abstracted models. The perhaps simplest model unit is a linear unit, which outputs a
linear combination of its inputs (Figure 1a). Such units, combined to form networks, can never
transcend linear combinations of the inputs. This insight is illustrated in Figure 2b, which shows
how an output unit that linearly combines intermediate-layer linear-unit activations just adds up
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y2 = f (f (x W1) • W2)y2 = x W1 W2 = x W'

Figure 2
Networks with nonlinear hidden units can approximate arbitrary nonlinear functions. (a) A feedforward neural network with a single
hidden layer. (b) Activation of the pink and blue hidden units as a function of the input pattern (x1, x2) when the hidden units have
linear activation functions. Each output unit ( y2) will compute a weighted combination of the ramp-shaped (i.e., linear) activations of
the hidden units. Thus, the output remains a linear combination of the input pattern. A linear hidden layer is not useful because the
resulting network is equivalent to a linear network without a hidden layer intervening between input and output. (c) Activation of the
pink and blue hidden units when these have sigmoid activation functions. Arbitrary continuous functions can be approximated in the
output units ( y2) by weighted combinations of a sufficient number of nonlinear hidden-unit outputs ( y1).

Universal function
approximator:
model family that can
approximate any
function that maps
input patterns to
output patterns (with
arbitrary precision
when allowed enough
parameters)

ramp functions, and thus itself computes a ramp function. A multilayer network of linear units is
equivalent to a single-layer network whose weights matrix W′ is the product of the weights matrices
Wi of the multilayer network. Nonlinear units are essential because their outputs provide building
blocks (Figure 2c) whose linear combination one level up enables us to approximate any desired
mapping from inputs to outputs, as described in the next section.

A unit in a neural network uses its input weights w to compute a weighted sum z of its input
activities x and passes the result through a (typically monotonic) nonlinear function f to generate its
activation y (Figure 1a). In early models, the nonlinearity was simply a step function (McCulloch
& Pitts 1943, Rosenblatt 1958, Minsky & Papert 1972), making each unit a linear discriminant
imposing a binary threshold. For a single threshold unit, the perceptron learning algorithm pro-
vides a method for iteratively adjusting the weights (starting with zeros or random weights) so as
to get as many training input–output pairs as possible right. However, hard thresholding entails
that, for a given pair of an input pattern and a desired output pattern, small changes to the weights
will often make no difference to the output. This makes it difficult to learn the weights for a multi-
layer network by gradient descent, where small adjustments to the weights are made to iteratively
reduce the errors. If the hard threshold is replaced by a soft threshold that continuously varies,
such as a sigmoid function, gradient descent can be used for learning.

Networks with Nonlinear Hidden Units Are Universal Function Approximators
The particular shape of the nonlinear activation function does not matter to the class of input–
output mappings that can be represented. Feedforward networks with at least one layer of hidden
units intervening between input and output layers are universal function approximators: Given
a sufficient number of hidden units, a network can approximate any function of the inputs in
the output units. Continuous functions can be approximated with arbitrary precision by adding
a sufficient number of hidden units and suitably setting the weights (Schäfer & Zimmermann
2007, Hornik 1991, Cybenko 1989). Figure 2c illustrates this process for two-dimensional inputs:
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Convolutional
network:
network in which the
preactivation of a layer
(before the
nonlinearity)
implements
convolutions of the
previous layer with a
number of
weight-template
patterns

Receptive field
modeling: predictive
modeling of the
response to arbitrary
sensory inputs of
neurons (or measured
channels of brain
activity)

can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.

11

11

11

11

224

224 Stride
of 4

5
5

5
5

48
55

Max-
pooling

55

483

3

3
3

33
3

3
3

27

27 128

128

192

192

3
3

3
3 13131313

13 13

13

33
3

3
3

192

192

13

128

128
Max-
pooling

Max-
pooling

2,048

2,048

2,048

2,048

1,000

Dense Dense

Dense

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Convolutional Fully connected

Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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can be pretrained layer by layer in the autoencoder framework using a large set of unlabeled images.
Once the network has learned a reasonable representation of natural images, it can more easily be
trained with backpropagation to predict the correct image labels.

FEEDFORWARD NEURAL NETWORKS FOR VISUAL
OBJECT RECOGNITION
Computer vision has recently come to be dominated by a particular type of deep neural network: the
deep feedforward convolutional network. These networks now robustly outperform the previous
state of the art, which consisted in hand-engineered visual features (e.g., Lowe 1999) forming the
input to shallow machine learning classifiers such as support vector machines. Interestingly, some
of the earlier systems inserted an intermediate representation, often acquired by unsupervised
learning, between the hand-engineered features and the supervised classifier. The insertion of this
representation might have helped address the need for a deeper architecture.

The deep convolutional nets widely used computer vision today share several architectural
features, some of which are loosely inspired by biological vision systems (Hubel & Wiesel 1968).

! Deep hierarchy: Like the primate ventral visual stream, these networks process information
through a deep hierarchy of representations (typically 5 to 20 layers; see Figure 3 for an
example), gradually transforming a visual representation, whose spatial layout matches the
image, to a semantic representation that enables the recognition of object categories.
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Figure 3
Deep convolutional feedforward architecture for object recognition. The figure shows the architecture used by Krizhevsky et al. (2012).
The information flows from the input pixel image (left) (224 × 224 pixels, 3 color channels) through 7 hidden layers to the category
output (right) (1,000 category detector units). The large boxes represent stacks of feature maps. For layer 2, for example, the lower large
box represents 128 feature maps of size 27 (horizontal image positions) × 27 (vertical image positions). Note that the dimensions of the
boxes are not drawn to scale. The small boxes represent the feature templates that are convolved with the representation in a given
layer. Because convolution and max-pooling operate at strides greater than 1 pixel, the spatial extent of the feature maps decreases
along the sequence of representations (224, 55, 27, 13, 13, 13, 1, 1, 1). The upper and lower large boxes represent the division of labor
between two graphics processing units.
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Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 4
Deep supervised learning produces feature selectivities that are qualitatively consistent with
neurophysiological findings. To understand representations in deep neural networks, we can visualize which
image elements drive a given unit in a deep network. For 20 example units (4 from each of 5 layers), the
images shown visualize what caused the response in the context of a particular image that strongly drove the
unit. The visualization technique used here involves two steps: selection of an input image that strongly
drives the unit, and inversion of the feedforward computation to generate the image element responsible.
Convolutions along the feedforward pass are inverted by deconvolution (using the transposes of the
convolution matrices). Max-pooling operations are inverted by storing the identity of the connection to the
pooling unit that was maximally active in the feedforward pass. Note that a unit deep in a network does not
perform a simple template-matching operation on the image and therefore cannot be fully characterized by
any visual template. However, performing the above visualization for many images that drive a unit (not
shown) can help us understand its selectivity and tolerances. The deconvolutional visualization technique
shown was developed by Zeiler & Fergus (2014). The deep network is from Chatfield et al. (2014). The
analysis was performed by Güçlü & van Gerven (2015). Figure adapted with permission from Güçlü & van
Gerven (2015).

to those shown may be the exception rather than the rule, and it is unclear whether they are
essential to the functionality of the network. For example, meaningful selectivities could reside in
linear combinations of units rather than in single units, with weak distributed activities encoding
essential information.

The representational hierarchy appears to gradually transform a space-based visual to a shape-
based and semantic representation. The network acquires complex knowledge about the kinds of
shapes associated with each category. In this context, shape refers to luminance- and color-defined
features of various levels of complexity. High-level units appear to learn representations of shapes
occurring in natural images, such as faces, human bodies, animals, natural scenes, buildings, and
cars. The selectivities learned are not restricted to the categories detected by the output layer, but
may include selectivities to parts of these objects or even to context elements. For example, the
network by Krizhevsky et al. (2012) contains units that appear to be selective for text (Yosinski et al.
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Figure 5
Deep neural network explains early visual and inferior temporal representations of object images. Each representation in model and
brain was characterized by the dissimilarity matrix of the response patterns elicited by a set of real-world photos of objects.
(a) Representations become monotonically more similar to those of human inferior temporal (IT) cortex as we ascend the layers of the
Krizhevsky et al. (2012) neural network. When the final representational stages are linearly remixed to emphasize the same semantic
dimensions as IT using linear category discriminants (second bar from the right), and when each layer and each discriminant are assigned
a weight to model the prevalence of different computational features in IT (cross-validated to avoid overfitting to the image set;
rightmost bar), the noise ceiling ( gray shaded region) is reached, indicating that the model fully explains the data. When the same method
of linear combination with category discriminants and weighting was applied to traditional computer vision features (not shown here),
the representation did not explain the IT data. Similar results were obtained for monkey IT (not shown here). (b) Lower layers of the
deep neural network resemble the representations in the foveal confluence of early visual areas (V1–V3). Asterisks indicate accuracy
above chance as follows: ns, not significant; ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001; ∗∗∗∗, p < 0.0001. The similarity between each
model representation and IT (vertical axes) was measured using Kendall’s rank correlation coefficient τ a to compare representational
dissimilarity matrices (subject-group-average τ a plotted). Results reproduced from Khaligh-Razavi & Kriegeskorte (2014).

network representation explained the IT representation substantially and significantly better than
a similarly IT-fitted combination of the conventional computer vision features.

Cadieu et al. (2013, 2014) analyzed the internal representations of a population of IT cells
alongside models of early vision, the HMAX model (Riesenhuber & Poggio 1999, Serre et al.
2007), a hierarchically optimized multilayer model from Yamins et al. (2013, 2014), and the deep
neural networks from Krizhevsky et al. (2012) and Zeiler & Fergus (2014). The representations
performing best at object categorization (Figure 6a) were the deep neural network built by Zeiler
& Fergus (2014) and the biological IT representation (monkey neuronal recordings), followed
closely by the deep network proposed by Krizhevsky et al. (2012). The other representations
performed at much lower levels. The two deep networks explained the IT data equally well, as
did neuronal recordings from an independent set of IT neurons (Figure 6b).

Several additional studies have yielded similar results and are beginning to characterize the
extent to which representations at different depths can explain the representational stages of the
ventral stream (Agrawal et al. 2014, Güçlü & van Gerven 2015). Overall, these early empirical
comparisons between deep neural network models and the primate ventral stream suggest four

432 Kriegeskorte
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Figure 5
Deep neural network explains early visual and inferior temporal representations of object images. Each representation in model and
brain was characterized by the dissimilarity matrix of the response patterns elicited by a set of real-world photos of objects.
(a) Representations become monotonically more similar to those of human inferior temporal (IT) cortex as we ascend the layers of the
Krizhevsky et al. (2012) neural network. When the final representational stages are linearly remixed to emphasize the same semantic
dimensions as IT using linear category discriminants (second bar from the right), and when each layer and each discriminant are assigned
a weight to model the prevalence of different computational features in IT (cross-validated to avoid overfitting to the image set;
rightmost bar), the noise ceiling ( gray shaded region) is reached, indicating that the model fully explains the data. When the same method
of linear combination with category discriminants and weighting was applied to traditional computer vision features (not shown here),
the representation did not explain the IT data. Similar results were obtained for monkey IT (not shown here). (b) Lower layers of the
deep neural network resemble the representations in the foveal confluence of early visual areas (V1–V3). Asterisks indicate accuracy
above chance as follows: ns, not significant; ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001; ∗∗∗∗, p < 0.0001. The similarity between each
model representation and IT (vertical axes) was measured using Kendall’s rank correlation coefficient τ a to compare representational
dissimilarity matrices (subject-group-average τ a plotted). Results reproduced from Khaligh-Razavi & Kriegeskorte (2014).

network representation explained the IT representation substantially and significantly better than
a similarly IT-fitted combination of the conventional computer vision features.

Cadieu et al. (2013, 2014) analyzed the internal representations of a population of IT cells
alongside models of early vision, the HMAX model (Riesenhuber & Poggio 1999, Serre et al.
2007), a hierarchically optimized multilayer model from Yamins et al. (2013, 2014), and the deep
neural networks from Krizhevsky et al. (2012) and Zeiler & Fergus (2014). The representations
performing best at object categorization (Figure 6a) were the deep neural network built by Zeiler
& Fergus (2014) and the biological IT representation (monkey neuronal recordings), followed
closely by the deep network proposed by Krizhevsky et al. (2012). The other representations
performed at much lower levels. The two deep networks explained the IT data equally well, as
did neuronal recordings from an independent set of IT neurons (Figure 6b).

Several additional studies have yielded similar results and are beginning to characterize the
extent to which representations at different depths can explain the representational stages of the
ventral stream (Agrawal et al. 2014, Güçlü & van Gerven 2015). Overall, these early empirical
comparisons between deep neural network models and the primate ventral stream suggest four
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whole brain. In imaging, however, a single channel refl ects the joint 
activity of tens of thousands (high-resolution fMRI), or even mil-
lions of neurons (scalp electrophysiology).

If the same activity patterns are measured with two different 
techniques, we expect an overlap in the information sampled. 
However, different techniques sample activity patterns in funda-
mentally different ways. Invasive electrophysiology measures the 
electrical activity of single cells, whereas fMRI measures the hemo-
dynamic aspect of brain activity. Although the hemodynamic fMRI 
signal has been shown to refl ect neuronal activity (Logothetis et al. 
2001; see also Bandettini and Ungerleider, 2001), fMRI patterns 
are spatiotemporally displaced, smoothed, and distorted. Scalp 

 electrophysiology combines high temporal resolution with a spatial 
sampling of neuronal activity that is even coarser than in fMRI.

Neuroscientifi c theory must abstract from the idiosyncrasies of 
particular empirical modalities. To this end, we need a modality-
independent way of characterizing a brain region’s representation. 
Such a characterization will also enable us to elucidate in how far 
different modalities provide consistent or inconsistent informa-
tion. One way of characterizing the information a brain region 
represents is in terms of the mental states (e.g., stimulus percepts) 
it distinguishes (Figure 1). Here we suggest to relate modalities of 
brain-activity measurement and information-processing models 
by comparing activity-pattern dissimilarity matrices. Our approach 

FIGURE 1 | Characterizing brain regions by representational similarity 
structure. For each region, a similarity-graph icon shows the similarities 
between the activity patterns elicited by four stimulus images. Images placed 
close together in the icon elicited similar response patterns. Images placed far 
apart elicited dissimilar response patterns. The color of each connection line 
indicates whether the response-pattern difference was signifi cant for the group 
(red: p < 0.01; light gray: p ≥ 0.05, not signifi cant). A connection line, like a 
rubberband, becomes thinner when stretched beyond the length that would 
exactly refl ect the dissimilarity it represents. Connections also become thicker 
when compressed. Line thickness, thus, indicates the inevitable distortion of 
the 2D representation of the higher-dimensional similarity structure. The 

thickness of the connection lines is chosen such that the area of each 
connection (length times thickness) precisely refl ects the dissimilarity measure. 
This novel visualization of fMRI response-pattern information combines (A) a 
multidimensional-scaling arrangement of activity-pattern similarity (as introduced 
to fMRI by Edelman et al., 1998), (B) a novel rubberband-graph depiction of 
inevitable distortions, and (C) the results of statistical tests of a pattern-
information analysis (for details on the test, see Kriegeskorte et al., 2007). The 
icons show fi xed-effects group analyses for regions of interest individually 
defi ned in 11 subjects. Early visual cortex was anatomically defi ned; all other 
regions were functionally defi ned using a data set independent of that used to 
compute the similarity-graph icons and statistical tests.

Images	
  placed	
  close	
  together	
  elicit	
  similar	
  response	
  patterns;
red	
  line	
  for	
  significance	
  (Kriegeskorte,	
  2008)



Associated	
  activity	
  patterns	
  for	
  a	
  given	
  image	
  compared	
  
by	
  spatial	
  correlation	
  (Kriegeskorte,	
  2008)
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obviates the need for defi ning explicit spatial correspondency map-
pings or transformations from one modality into another.

THE REPRESENTATIONAL DISSIMILARITY MATRIX
For a given brain region, we interpret (Dennett, 1987) the activ-
ity pattern associated with each experimental condition as a rep-
resentation (e.g., a stimulus representation)1. By comparing the 
activity patterns associated with each pair of conditions (Edelman 

et al., 1998; Haxby et al., 2001), we obtain a representational 
 dissimilarity matrix (RDM; Figure 2), which serves to character-
ize the representation2.

An RDM contains a cell for each pair of experimental conditions 
(Figure 2). Each cell contains a number refl ecting the dissimilar-
ity between the activity patterns associated with the two condi-
tions. As a consequence, an RDM is symmetric about a diagonal of 

FIGURE 2 | Computation of the representational dissimilarity matrix. For 
each pair of experimental conditions, the associated activity patterns (in a brain 
region or model) are compared by spatial correlation. The dissimilarity between 
them is measured as 1 minus the correlation (0 for perfect correlation, 1 for no 
correlation, 2 for perfect anticorrelation). These dissimilarities for all pairs of 

conditions are assembled in the RDM. Each cell of the RDM, thus, compares 
the response patterns elicited by two images. As a consequence, an RDM is 
symmetric about a diagonal of zeros. To visualize the representation for a small 
number of conditions, we suggest the similarity-graph icon (top right, cf. 
Figure 1).

1More generally, we can think of the activity pattern as the physical manifestation of 
the mental state induced by the experimental condition. The mental state could be 
the percept of an external object or something more remotely related to the external 
world, such as a motor program, a plan, or an emotion.

2Note that similarity (a term we use here to refer to the general concept) can equal-
ly well be characterized by a similarity measure (in which greater values indicate 
greater similarity) or a dissimilarity measure (in which greater values indicate less 
similarity). We prefer the latter because of its intuitive relationship to distances in 
a multidimensional space.

Cell	
   in	
  Matrix	
  for	
  each	
  pair	
  of
experimental	
   conditions.
Do	
  this	
   in	
  model,	
   and	
  separately
for	
  data	
  – and	
  compare	
  matrices
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models of brain information processing form an integrated 
 component of data analysis and can be directly evaluated and com-
pared. We demonstrate how to apply multivariate analysis to a set of 
dissimilarity matrices from brain regions and models in order to fi nd 
out (1) which model best explains the representation in each brain 
region and (2) to what extent representations among regions and 
models resemble each other. We introduce a randomization test of 

 representational relatedness and a bootstrap technique for obtaining 
error bars on estimates of the goodness of fi t of different models.
(2) Relating regions, subjects, species, and modalities of brain-
activity measurement. We discuss how RSA can be used to quan-
titatively relate:
• representations in different regions of the same brain (“repre-

sentational connectivity”),

A

B

FIGURE 3 | The representational dissimilarity matrix as a hub that relates 
different representations. (A) Systems neuroscience has struggled to relate its 
three major branches of research: behavioral experimentation, brain-activity 
experimentation, and computational modeling. So far these branches have 
interacted largely on two levels: (1) They have interacted on the level of verbal 
theory, i.e., by comparing conclusions drawn from separate analyses. This level 
is essential, but it is not quantitative. (2) They have interacted at the level 
characteristic functions, e.g., by comparing psychometric and neurometric 
functions. This form of bringing the branches in touch is equally essential 
and can be quantitative. However, characteristic functions typically contain 
only a small number of data points, so the interface is not informationally 

rich. Note that the RDM shown is based on only four conditions, yielding 
only (42 − 4)/2 = 6 parameters. However, since the number of parameters 
grows as the square of the number of conditions, the RDM can provide 
an informationally rich interface for relating different representations. 
Consider for example the 96-image experiment we discuss, where the 
matrix has (962 − 96)/2 = 4,560 parameters. (B) This panel illustrates in 
greater detail what different representations can be related via the 
quantitative interface provided by the RDM. We arbitrarily chose the example of 
fMRI to illustrate the within-modality relationships that can be established. Note 
that all these relationships are diffi cult to establish otherwise (gray double 
arrows).

Kriegeskorte,	
  2008



twofold cross-validation using a maximum correlation classifier, re-
peated 50 times over permutations of classifier training and testing data
partitions.

Analysis. For each of the 276 binary object recognition tasks, an
unbiased measure of performance was estimated using a sensitivity
index d! (Macmillan, 1993): d! " Z(hit rate) # Z(false-alarm rate),
where Z(. . . ) is the inverse of the cumulative Gaussian distribution.
All d! estimates were constrained to a range of [0, 5]. Bias was esti-
mated using a criterion index c (Macmillan, 1993): c " 0.5 $ (Z(hit
rate) % Z(false-alarm rate)). We refer to the 276-dimensional vector
of d! values over all binary object recognition tasks as the “pattern of
behavioral performance” (b).

The reliability (also known as internal consistency) of behavioral
data was computed as the Spearman’s correlation between patterns of
behavioral performance patterns computed on separate halves of the
data (random split-halves of trials); this process was repeated across
100 draws. Because this estimate is measured using only half of the
data, the Spearman–Brown prediction formula (Brown, 1910; Spear-
man, 1910) was applied to allow for comparisons with correlations
measured using all trials.

Consistency between different behavioral patterns b1, b2 was then
computed as a noise-adjusted rank correlation between patterns of be-
havioral performances (d! or c vectors):

!̃b1,b2 "
!b1,b2

!!b1,b1 # !b2,b2

,

where !b1,b2 is the raw Spearman’s rank correlation, and !b1,b1, !b2,b2 are the
Spearman–Brown corrected internal consistency estimates of each behav-
ioral pattern. Our rationale for using a noise-adjusted correlation measure
for consistency was to account for variance in the behavioral patterns that
arises from “noise,” i.e., variability that is not replicable by stimulus object
identity. We obtained a distribution of consistency values using the 100
resampled estimates of internal consistencies of each behavioral pattern (i.e.,
from the 100 random draws of split-halves of trials of b1, b2).

Results
As stated in Introduction, our primary goal was to measure the
difficulty of hundreds of basic-level invariant object discrimina-

A

B C D

Figure 3. A, Pattern of behavioral performances for the pooled human and pooled monkey. Each 24 $ 24 matrix summarizes confusions of all two-way tasks: the color of bin (i,j) indicates the
unbiased performance (d!) of the binary recognition task with objects i and j. Objects have been reordered based on a hierarchical clustering of human confusion patterns to highlight structure in
the matrix. We observe qualitative similarities in the confusion patterns. For example, (camel, dog) and (tank, truck) are two often confused object pairs in both monkeys and humans. B, Comparison
of d! estimates of all 276 tasks (mean & SE as estimated by bootstrap, 100 resamples) of the pooled human with that of the pooled monkey (top) and a low-level pixel representation (bottom). C,
Quantification of consistency as noise-adjusted correlation of d! vectors. The pooled monkey shows patterns of confusions that are highly correlated with pooled human subject confusion patterns
(consistency of pooled monkey, 0.78). Importantly, low-level visual representations do not share these confusion patterns (pixels, 0.37; V1%, 0.52). Furthermore, a state-of-the-art deep
convolutional neural network representation was highly predictive of human confusion patterns (CNN2013, 0.86), in contrast to an alternative model of the ventral stream (HMAX, 0.55). The dashed
lines indicate thresholds at p " 0.1, 0.05 confidence for consistency to the gold-standard pooled human, estimated from pairs of individual human subjects. D, Comparison of d! estimates of all 276
tasks (mean & SE as estimated by bootstrap, 100 resamples) between the two monkeys.

12132 • J. Neurosci., September 2, 2015 • 35(35):12127–12136 Rajalingham et al. • Comparing Object Recognition in Humans and Monkeys

Comparison of Object Recognition Behavior in Human
and Monkey (IT): Rajalingham, Schmidt, and DiCarlo
2015
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Figure 6
Deep neural networks beat simpler computational models at recognition and better explain the IT
representation. (a) Object recognition performance of deep neural networks beats that of shallower models
and rivals that of a population of IT neurons recorded in a monkey. Recognition performance (vertical axis) is
plotted as a function of readout-model complexity (horizontal axis); high performance at low complexity
indicates that the categories occupy easily separable regions in the representational space. (b) Deep neural
network representations more closely resemble IT than do three simpler models (V1-like, V2-like, and
HMAX). The similarity between each model and IT (vertical axis) was measured using the Spearman’s rank
correlation coefficient (ρ) to compare representational dissimilarity matrices. Results reproduced from
Cadieu et al. (2014). Abbreviations: HMAX, hierarchical model and X (Riesenhuber & Poggio 1999, Serre
et al. 2007, Tarr 1999); HMO, hierarchical modular optimization model (Yamins et al. 2014); IT, inferior
temporal cortex.
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DNNs Rival the Representation of IT Cortex for Core Object Recognition

PLOS Computational Biology | www.ploscompbiol.org 9 December 2014 | Volume 10 | Issue 12 | e1003963

Figure	
  from	
  Cadieu et	
  al.	
  2014	
  paper



Fitting  neurons  in  IT

Yamins et	
  al.	
  2014

features are generated at each stage, the representations be-
come increasingly IT-like (9).
Critically, we found that the top layer of the high-performing

HMO model achieves high predictivity for individual IT neural
sites, predicting 48:5± 1:3% of the explainable IT neuronal
variance (Fig. 3 B and C). This represents a nearly 100% im-
provement over the best comparison models and is comparable
to the prediction accuracy of state-of-the-art models of lower-
level ventral areas such as V1 on complex stimuli (10). In com-
parison, although the HMAX model was better at predicting IT
responses than baseline V1 or SIFT, it was not significantly
different from the V2-like model.
To control for how much neural predictivity should be

expected from any algorithm with high categorization perfor-
mance, we assessed semantic ideal observers (34), including
a hypothetical model that has perfect access to all category
labels. The ideal observers do predict IT units above chance level
(Fig. 3C, left two bars), consistent with the observation that IT
neurons are partially categorical. However, the ideal observers
are significantly less predictive than the HMO model, showing
that high IT predictivity does not automatically follow from
category selectivity and that there is significant noncategorical
structure in IT responses attributable to intrinsic aspects of hi-
erarchical network structure (Fig. 3A, last row). These results
suggest that high categorization performance and the hierar-
chical model architecture class work in concert to produce IT-
like populations, and neither of these constraints is sufficient on
its own to do so.

Population Representation Similarity. Characterizing the IT neural
representation at the population level may be equally important
for understanding object visual representation as individual IT
neural sites. The representation dissimilarity matrix (RDM) is a

convenient tool comparing two representations on a common
stimulus set in a task-independent manner (4, 35). Each entry in
the RDM corresponds to one stimulus pair, with high/low values
indicating that the population as a whole treats the pair stimuli
as very different/similar. Taken over the whole stimulus set, the
RDM characterizes the layout of the images in the high-
dimensional neural population space. When images are ordered
by category, the RDM for the measured IT neural population
(Fig. 4A) exhibits clear block-diagonal structure—associated
with IT’s exceptionally high categorization performance—as well
as off-diagonal structure that characterizes the IT neural repre-
sentation more finely than any single performance metric (Fig.
4A and Fig. S8). We found that the neural population predicted
by the output layer of the HMOmodel had very high similarity to
the actual IT population structure, close to the split-half noise
ceiling of the IT population (Fig. 4B). This implies that much of
the residual variance unexplained at the single-site level may not
be relevant for object recognition in the IT population level code.
We also performed two stronger tests of generalization: (i)

object-level generalization, in which the regressor training set
contained images of only 32 object exemplars (four in each of
eight categories), with RDMs assessed only on the remaining 32
objects, and (ii) category-level generalization, in which the re-
gressor sample set contained images of only half the categories
but RDMs were assessed only on images of the other categories
(see Figs. S8 and S9). We found that the prediction generalizes
robustly, capturing the IT population’s layout for images of
completely novel objects and categories (Fig. 4 B and C and
Fig. S8).

Predicting Responses in V4 from Intermediate Model Layers. Cortical
area V4 is the dominant cortical input to IT, and the neural
representation in V4 is known to be significantly less categorical
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Fig. 3. IT neural predictions. (A) Actual neural re-
sponse (black trace) vs. model predictions (colored
trace) for three individual IT neural sites. The x axis
in each plot shows 1,600 test images sorted first by
category identity and then by variation amount,
with more drastic image transformations toward the
right within each category block. The y axis repre-
sents the prediction/response magnitude of the
neural site for each test image (those not used to fit
the model). Two of the units show selectivity for
specific classes of objects, namely chairs (Left) and
faces (Center), whereas the third (Right) exhibits
a wider variety of image preferences. The four top
rows show neural predictions using the visual fea-
ture set (i.e., units sampled) from each of the four
layers of the HMO model, whereas the lower rows
show the those of control models. (B) Distributions
of model explained variance percentage, over the
population of all measured IT sites (n = 168). Yellow
dotted line indicates distribution median. (C)
Comparison of IT neural explained variance per-
centage for various models. Bar height shows me-
dian explained variance, taken over all predicted IT
units. Error bars are computed over image splits.
Colored bars are those shown in A and B, whereas
gray bars are additional comparisons.
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Deep learning software

• Berkeley Caffe (visual models) ; now also Caffe2

• Google TensorFlow

• Theano

• Keras on top of TensorFlow, Theano

• Web browser demo: 
http://cs.stanford.edu/people/karpathy/convnetjs/index.html

All	
  have	
  Python	
  interface,	
   Caffe has	
  Python/Matlab interface

Flexibility	
  versus	
  modifying	
  existing	
  frameworks

See	
  some	
   comparisons	
  here:

http://deeplearning4j.org/compare-­‐dl4j-­‐torch7-­‐pylearn.html
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SUMMARY POINTS

1. Neural networks are brain-inspired computational models that now dominate computer
vision and other AI applications.

2. Neural networks consist of interconnected units that compute nonlinear functions of
their input. Units typically compute weighted combinations of their inputs followed by
a static nonlinearity.

3. Feedforward neural networks are universal function approximators.

4. Recurrent neural networks are universal approximators of dynamical systems.

5. Deep neural networks stack multiple layers of nonlinear transformations and can con-
cisely represent complex functions such as those needed for vision.

6. Convolutional neural networks constrain the input connections of units in early layers
to local receptive fields with weight templates that are replicated across spatial positions.
The restriction and sharing of weights greatly reduce the number of parameters that
need to be learned.

7. Deep convolutional feedforward networks for object recognition are not biologically
detailed and rely on nonlinearities and learning algorithms that may differ from those of
biological brains. Nevertheless they learn internal representations that are highly similar
to representations in human and nonhuman primate IT cortex.

8. Neural networks now scale to real-world AI tasks, providing an exciting technologi-
cal framework for building more biologically faithful models of complex feats of brain
information processing.

FUTURE ISSUES

1. We will build neural net models that engage complex real-world tasks and simultaneously
explain biological brain-activity patterns and behavioral performance.

2. The models will have greater biological fidelity in terms of architectural parameters,
nonlinear representational transformations, and learning algorithms.

3. Network layers should match the areas of the visual hierarchy in their response charac-
teristics and representational geometries.

4. Models should predict a rich array of behavioral measurements, such as reaction times
for particular stimuli in different tasks, similarity judgments, task errors, and detailed
motor trajectories in continuous interactive tasks.

5. New supervised learning techniques will drive neural networks into alignment with mea-
sured functional and anatomical brain data and with behavioral data.

6. Recurrent neural network models will explain the representational dynamics of biological
brains.

7. Recurrent neural network models will explain how feedforward, lateral, and feedback
information flow interact to implement probabilistic inference on generative models of
image formation.
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SUMMARY POINTS

1. Neural networks are brain-inspired computational models that now dominate computer
vision and other AI applications.

2. Neural networks consist of interconnected units that compute nonlinear functions of
their input. Units typically compute weighted combinations of their inputs followed by
a static nonlinearity.

3. Feedforward neural networks are universal function approximators.

4. Recurrent neural networks are universal approximators of dynamical systems.

5. Deep neural networks stack multiple layers of nonlinear transformations and can con-
cisely represent complex functions such as those needed for vision.

6. Convolutional neural networks constrain the input connections of units in early layers
to local receptive fields with weight templates that are replicated across spatial positions.
The restriction and sharing of weights greatly reduce the number of parameters that
need to be learned.

7. Deep convolutional feedforward networks for object recognition are not biologically
detailed and rely on nonlinearities and learning algorithms that may differ from those of
biological brains. Nevertheless they learn internal representations that are highly similar
to representations in human and nonhuman primate IT cortex.

8. Neural networks now scale to real-world AI tasks, providing an exciting technologi-
cal framework for building more biologically faithful models of complex feats of brain
information processing.

FUTURE ISSUES

1. We will build neural net models that engage complex real-world tasks and simultaneously
explain biological brain-activity patterns and behavioral performance.

2. The models will have greater biological fidelity in terms of architectural parameters,
nonlinear representational transformations, and learning algorithms.

3. Network layers should match the areas of the visual hierarchy in their response charac-
teristics and representational geometries.

4. Models should predict a rich array of behavioral measurements, such as reaction times
for particular stimuli in different tasks, similarity judgments, task errors, and detailed
motor trajectories in continuous interactive tasks.

5. New supervised learning techniques will drive neural networks into alignment with mea-
sured functional and anatomical brain data and with behavioral data.

6. Recurrent neural network models will explain the representational dynamics of biological
brains.

7. Recurrent neural network models will explain how feedforward, lateral, and feedback
information flow interact to implement probabilistic inference on generative models of
image formation.
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