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Table 1 Historical progress toward understanding how the brain works

Elements required for Classical Future cognitive
understanding how the Cognitive Cognitive Cognitive computational computational
brain works Behaviorism| psychology science neuroscience | neuroscience neuroscience
Data Behavioral v v v v v v
Neurophysiological v v v
Theory | Cognitive v v v v
Fully computationally v v v
explicit
Neurally plausible v v v
Explanation of real-world tasks v v v
requiring rich knowledge and
complex computations
Explanation of how high-level v

neuronal populations
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Layer 1

Learn weights and bias

OneRF:11x11x3
(3 color axes)

(11 x 11 x 3 weights and 1 bias term)
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Layer 1

Learn weights and bias

OneRF:11x11x3
(3 color axes)

(11 x 11 x 3 weights and 1 bias term)

Total of 96 RFs (each convolved/replicated
along all locations)
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Learn weights and bias

OneRF:11x11x3
(3 color axes)

(11 x 11 x 3 weights and 1 bias term)

Total of 96 RFs (each convolved/replicated
along all locations)

Number parameters = (11*11*3)*96=35k



Layer 1

Stride of 4 between each location
(reduces from 227 x 227 to 55 x 55)
Note typo in original paper/figure;
Sizeis 227 and not 224

(227-11)/4+ 1 =55

RF size=11
Stride =4




Layer 1

Stride of 4 between each location
(reduces from 227 x 227 to 55 x 55)
Note typo in original paper/figure
(227-11)/4+ 1 =55

RF size=11
Stride = 4

Conv 1 layer output: 55 x 55 x 96
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Convolutional Neural Networks:
example of max pooling

x 1111124
max pool with 2x2 filters
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From http://cs231n.github.io/convolutional-networks/
Fei Fei, Karpathy, Johnson
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Anterior inferotemporal face-exemplar f‘"’ﬁ 5
region @

Parahippocampal
place area

Fusiform face
area

Early visual cortex

Images placed close together elicit similar response patterns;
red line for significance (Kriegeskorte, 2008)



similarity-graph icon

dissimilarity matrix

dissimilarity

compute dissimilarity
(1-correlation across space)
Cell in Matrix for each pair of

% a activity patterns experimental conditions.
Do this in model, and separately

f 1 for data — and compare matrices

brain or model

Associated activity patternsfor a given image compared
by spatial correlation (Kriegeskorte, 2008)

I experimental conditions




computational models
+ symbolic models

» connectionist models
* biological neural models

N

brain-activity data representational behavioral data

« cell recordings dissimilarity matrix * reaction time
« fMRI * errors
*EEG, MEG « explicit judgements

o N

Kriegeskorte, 2008
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Figure 7. Object-level representational similarity analysis comparing model and neural representations to the
IT multi-unit representation.

Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, et al. (2014) Deep Neural Networks Rival the
Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS Comput Biol
10(12): e1003963.d0i:10.1371/journal.pcbi.1003963
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Figure 7. Object-level representational similarity analysis comparing model and neural representations to the
IT multi-unit representation.

Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, et al. (2014) Deep Neural Networks Rival the
Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS Comput Biol
10(12): e1003963.d0i:10.1371/journal.pcbi.1003963
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Deep neural network models

Figure from Cadieu et al. 2014 paper
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Deep learning software

+ Berkeley Caffe (visual models) ; now also Caffe2
+ Google TensorFlow

+ Theano

» Keras on top of TensorFlow, Theano

+ Web browser demo:
http://cs.stanford.edu/people/karpathy/convnetjs/index.html

All have Python interface, Caffe has Python/Matlab interface
Flexibility versus modifying existing frameworks
See some comparisons here:

http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html



Deep learning in your phone app
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See Gatys et al. 2015: ,
Separating content and style in a deep network ] ‘ 'Dr'earﬁs"”




Deep learning in your phone app

See Gatys et al. 2015:
Separating content and style in a deep network




. Neural networks are brain-inspired computational models that now dominate computer
vision and other Al applications.

. Neural networks consist of interconnected units that compute nonlinear functions of
their input. Units typically compute weighted combinations of their inputs followed by
a static nonlinearity.

3. Feedforward neural networks are universal function approximators.

. Recurrent neural networks are universal approximators of dynamical systems.

5. Deep neural networks stack multiple layers of nonlinear transformations and can con-

cisely represent complex functions such as those needed for vision.

. Convolutional neural networks constrain the input connections of units in early layers
to local receptive fields with weight templates that are replicated across spatial positions.
The restriction and sharing of weights greatly reduce the number of parameters that
need to be learned.

. Deep convolutional feedforward networks for object recognition are not biologically
detailed and rely on nonlinearities and learning algorithms that may differ from those of
biological brains. Nevertheless they learn internal representations that are highly similar
to representations in human and nonhuman primate I'T cortex.

. Neural networks now scale to real-world Al tasks, providing an exciting technologi-
cal framework for building more biologically faithful models of complex feats of brain
information processing.



. We will build neural net models that engage complex real-world tasks and simultaneously
explain biological brain-activity patterns and behavioral performance.

. The models will have greater biological fidelity in terms of architectural parameters,
nonlinear representational transformations, and learning algorithms.

. Network layers should match the areas of the visual hierarchy in their response charac-
teristics and representational geometries.

. Models should predict a rich array of behavioral measurements, such as reaction times
for particular stimuli in different tasks, similarity judgments, task errors, and detailed
motor trajectories in continuous interactive tasks.

. New supervised learning techniques will drive neural networks into alignment with mea-
sured functional and anatomical brain data and with behavioral data.

. Recurrent neural network models will explain the representational dynamics of biological
brains.

. Recurrent neural network models will explain how feedforward, lateral, and feedback
information flow interact to implement probabilistic inference on generative models of
image formation.






