Neural coding: Part 3
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Last time

Generalized LNP response model

Methods paper on solving with Spike-triggered approaches:
Schwartz, Pillow, Rust, Simoncelli 2006



More complete visual system (e.g., retina)

a Coupled spiking model
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Pillow et al., Nature, 2008



More complete visual system (e.g., retina)

a Coupled spiking model

Stimulus Stochastic . . .
filter Nonlinearity  spiking Stimulus filter: spatio-temporal
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Post-spiking filter: Voltage-activated
currents (time course of recovery after
a spike)

Coupling
filters
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Neuron 2 V
b  ON mosaic OFF mosaic

Pillow et al., Nature, 2008



More complete visual system (e.g., retina)

a Coupled spiking model
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More complete visual system (e.g., retina)

a Coupled spiking model
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Pillow et al., Nature, 2008

Also used beyond vision, for instance:

Pillow et al., Nature Neuroscience 2014: Encoding and decoding in parietal
cortex during sensorimotor decision-making



Another example
system and coding



Ultra Sparse Song Bird System




Song before learning




Song after learning
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Songbird

b 100 ms
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Hahnloser et al. 2002, Nature

HVC neurons connect to RA neurons, which
control muscles



Frequency (kHz)

RA neurons

Songbird

, Song motif ,

Hahnloser et al. 2002, Nature

RA neurons fire at multiple times during a song



Songbird

Motif no.
1 2 3

et

HVC
wwi(RA);*wJ, :v‘#v s J\w o
(i)

(il (i)

1s

0 “‘“MW\"
(@ quWw\
(i) “’“Mﬂ““

4 ms

Hahnloser et al. 2002, Nature

HVC neurons burst reliably at a single precise
time in the song or call!
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Hahnloser et al. 2002, Nature

HVC neurons burst reliably at a single precise
time in the song or call



Songbird model

Why ultra sparse responses in
the songbird??



Songbird model

Why ultra sparse responses in
the songbird??

“Intuitively ... minimizing
interference between different
synapses during learning ... In
this paper we make the intuitive
argument more concrete.”

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong
Also: Doya and Sejnowski 1995 (considered sparseness in a model before known)



Songbird model

Why ultra sparse responses in
the songbird??

We'll look at modeling work, and
also introduce network modeling
approaches...



Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

Input known (binary burst
pulses chosen randomly of either
1, 2, 4 or 8 bursts per motif)

500 HVC neurons

800 RA neurons Hidden

2 Output Neurons
(number of vocal
muscles controlled;
7 in real system)

Desired output known

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

Input known (binary burst
pulses chosen randomly of either
1, 2, 4 or 8 bursts per motif)

500 HVC neurons

800 RA neurons Hidden

2 Output Neurons () (e Desired output known
(number of vocal

muscles controlled;
7 in real system)

Goal: minimize error between network output and desired output

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

500 HVC neurons

800 RA neurons

2 Output Neurons
(number of vocal
muscles controlled;
7 in real system)

Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

500 HVC neurons

800 RA neurons
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Sigmoid curve
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

500 HVC neurons

800 RA neurons

r(0) = F1, Wihi(r) — 6]

i=1
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We know inputs and desired outputs

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model
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Back propagation:

Compare outputs with correct answer to get error

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model

500 HVC neurons HVC 'q (“‘ Y h(0)
‘Ifl’ PP' (pfas.'rc)
800 RA neurons L\) i
_,;
“~ r(6) = f1 >, Wihi(t) — 6]
A {fixed) i=1
N

2 Output Neurons Output k\_/) I\ ak[:}
(number of vocal

O(t) = EAkjr (1)
muscles controlled) .

Back propagation:
Compare outputs with correct answer to get error
What kind of machine learning approach is this??

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model

500 HVC neurons

800 RA neurons

r(0) = F1, Wihi(r) — 6]

E i=1
2 Output Neurons Output O (:j 0, (1) N,
(number of vocal O(1) = 2 A1)
muscles controlled) -
=
Back propagation:

Compare outputs with correct answer to get error
What kind of machine learning approach is this?? Supervised learning

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model

500 HVC neurons

800 RA neurons

r(0) = F1, Wihi(r) — 6]

E i=1
2 Output Neurons Output O (:j 0, (1) N,
(number of vocal O(1) = z A1)
muscles controlled) -
=
Back propagation:

Compare outputs with correct answer to get error
(What other approach could be relevant here??)

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model

500 HVC neurons

800 RA neurons

r(0) = F1, Wihi(r) — 6]

E i=1
2 Output Neurons Output O (:j 0, (1) N,
(number of vocal O(1) = 2 A1)
muscles controlled) -
=
Back propagation:

Compare outputs with correct answer to get error
(What other approach could be relevant here?? Reinforcement learning)

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Songbird model
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Back propagation:

e Compare current outputs with correct desired
answer to get error
* Update weights by small step down gradient

Back Propagation: 1970s; Rumelhart, Williams, Hinton,
Nature, 1986; and prominent againtoday in deep networks



Back propagation

Error:
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Nature, 1986; and prominent againtoday in deep networks



Songbird model

Do sparse HVC responses help learning??
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model

o 100 == = — _ 20 HVC neurons
> 110 = — - each bursting once
—

Initial versus desired

final versus desired

Top: HVC units; middle: initial network output; and
bottom: final network output matching desired output
for one of the two output units

output units
Fiete et al. 2004: Temporal Sparseness of the Premotor Drive

Is Important for Rapid Learning in a Neural Network Model of Birdsong
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Squared Error

Songbird model

Eachline plot: Varying

number of bursts per motif of
simulated HVC neurons.

Lowest error for 1 burst per motif.

Most sparse
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Fiete et al. 2004: Temporal Sparseness of the Premotor Drive
Is Important for Rapid Learning in a Neural Network Model of Birdsong



Songbird model
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Songbird model
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Fiete et al. 2009, review

Synapse should be
strengthened and
weakened ->
Conflicting demands
causes slowdown

of learning



Canonical computationsin the brain??



Divisive normalization model

INPUL e - — Output

Other inputs

* Descriptive neural model

* Canonical computation (Carandini, Heeger, Nature Reviews, 2012)
* Has mechanistic and interpretive versions

* Related to gain control in engineering



Divisive normalization model

INPUL e - — Output

Light level
Sound level 1‘

Other inputs

Mean light level
Standard deviation light level

* Descriptive neural model

* Canonical computation (Carandini, Heeger, Nature Reviews, 2012)
* Has mechanistic and interpretive versions

* Related to gain control in engineering



Divisive normalization model

Simple version of descriptive model:

2
L Rm a.:cK
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K corresponds to illumination, contrast,

sound intensity, etc.



Divisive normalization model

Simple version of descriptive model:
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Figure 1.3. Behavior of Naka-Rushton equation. Left, The Naka-Rushton eq
tion for a constant R,,,, = 1 and variable . Note that higher values of ¢ shift
the response curve to the right on a log axis. Right, The Naka-Rushton equation
for a constant ¢ = .1 and variable R,,,.. Note that lower vales of R,,,. reduce

the saturation level of the response curve.



Example: light adaptation

100 7

757

v
o
|

Light g -3 Local
intensity contrast

f
_E:: 80

BEERO0O

[ [ [
10° 107 10
Light intensity

_ RT"(I-(ZTK:Z
- K24 g2

Response (%)

-y

o
|

|
N
v
|

Light adaptation to mean intensity in the retina
(in figure: turtle cone photoreceptor)
Carandini and Heeger, Nature Review Neuroscience, 2012



Example: primary visual cortex

Standard normalization
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Figure from:

Cagli, Kohn, Schwartz, Nature Neuroscience 2015



Example: multisensory integration

Multisensory neurons

KAAAK
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Auditory neurons Visual neurons

Multisensory integration (eg, can explain change in neural

responses with cue reliability)
Ohshiro, Angelaki, DeAngelis, Nature Neuroscience 2011

Figure from Churchland News and Views.



Example: decision making

A Divisive normalization Noise Selection
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“Context-dependent choice behavior is of particularinterest in
economics because it violates one of the fundamental assumptions of
many rational-choice theories, namely, that decisions reflect absolute
valuations assigned to individual options” .. Distractors canreduce or
even reverse choice”

Louie, Khaw and Glimcher, PNAS 2013: Normalization is a general neural
mechanism for context-dependent decision making



Alterations in Divisive Normalization?

* Rosenberg, Patterson, Angelaki, PNAS 2015: A
computational perspective on autism

* TibberMS, etal. (2013) Visual surround
suppressionin schizophrenia. Front Psychol 4:88.

e Betts LR, TaylorCP, Sekuler AB, Bennett P) (2005)
Aging reduces center-surround antagonismin
visual motion processing. Neuron 45(3):361-366



Mechanism of divisive normalization model
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Carandini and Heeger, Nature Review Neuroscience, 2012



