
Chapter 2, Part 3

Pushdown Automata and CFLs Are
Equivalent
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Properties of Context-Free Languages

Theorem. The context-free languages are closed under

union, concatenation, and star.

Proof Let S1 and S2 be the start symbols of two CFG. Let S0

be the new start symbol of the new CFG we are to create.

Adding S0 ⇒ S1 | S2 works for union.

Adding S0 ⇒ S1S2 works for concatenation.

Adding S0 ⇒ ǫ | S0S1 works for star.
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CFLs Capture PDA

Theorem. Every language recognized by PDA is context-

free.

Let L be a language recognized by a PDA M = (Q,Σ,Γ, δ, p0, F ).

We can modify M so that:

(*) M has a unique accept state and, when it enters the
state, the stack is empty.

(**) In a single move M may not both pop and push.
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Unique accept state and Empty Stack Acceptance

Modify M to create an equivalent PDA N =

(Q′,Σ,Γ′, δ′, q′
0
, {qf}).
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Unique accept state and Empty Stack Acceptance

Modify M to create an equivalent PDA N =

(Q′,Σ,Γ′, δ′, q′
0
, {qf}).

N simulates M after adding a new special symbol ⊥ to the stack.

If M enters a accept state, N may choose to empty the stack until

it encounters ⊥, when N may accept.
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Unique Accept State and Empty Stack Acceptance

Modify M to create an equivalent PDA N =

(Q′,Σ,Γ′, δ′, q′
0
, {qf}).

• Γ′ = Γ ∪ {⊥}.

• Q′ consists of:
• Q,

• a new initial state I,

• a new, unique accept state qf ,

• a clean-up state C,

• some additional states for achieving the “not both push
and pop” requirement.
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The use of q′
0
and C as a Bottom Marker

There is just one move in state q0: δ
′(q′

0
, ǫ, ǫ) = {(p0,⊥)}.

The transition mean: place a ⊥ on stack and then proceed to

the initial state of M .
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The Role of ⊥ and C

In each accept state p of M , we add (C, ǫ) to δ′(p, ǫ, ǫ).

The transition means: from any accept state of F , you may

proceed to C.
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The Role of ⊥ and C

We have

• δ′(C, ǫ,⊥) = {(qf , ǫ)} and

• for each a ∈ Γ, δ′(C, ǫ, a) = {(C, ǫ)}.

These transitions allow emptying stack and then entering qf .
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No Pop and Push at the Same Time

Suppose we have a permissible transition (q, c) for δ(p, a, b), where
a ∈ Σǫ and b, c ∈ Γ. Then we add a new state q′ exclusively
for this particular transition and replace this transition with two
transitions:

• (q′, ǫ) in δ(p, a, b) and

• (q, c) in δ(q′, ǫ, ǫ).
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Construction of Grammar

We say that M can transition from state p to state q on input w

while maintaining the minimum stack height if it is possible for M
to transition from p to q by processing w so that

• the stack height before reading w is the same as the stack
height after finishing to read w and then entering q,

• during these two events the stack height never goes below the
stack level at the time M starts processing w.
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Construction of Grammar

Construct a CFG (V,Σ, P, S): V = {Apq | p, q ∈ Q} and S =

Aq0qf , where q0 is the initial state of M and qf is the unique

accept state of M .

Apq is the variable corresponding to the set of all strings w that

M can process and transition from p to q while maintaining the

minimum stack height.
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Production rules:

• For every p ∈ Q, App → ǫ.
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Production rules:

• For every p ∈ Q, App → ǫ.

• For all p, q, r ∈ Q, Apq → AprArq.
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Production rules:

• For every p ∈ Q, App → ǫ.

• For all p, q, r ∈ Q, Apq → AprArq.

• For all p, q, r, s ∈ Q, b, c ∈ Σǫ, and d ∈ Γǫ,

if (r, d) ∈ δ(p, b, ǫ) and (q, ǫ) ∈ δ(s, c, d), then Apq → bArsc.

This means: one possibility for transition from p to q while
maintaining the stack height is to:

• transition from p to r after adding d on top of stack,

• transition from r to s while maintaining the stack height,
and

• transition from s to q while popping the d.
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PDAs Recognize CFLs

Theorem. Each context-free language is recognized by a

PDA.

Given an arbitrary CFL L and want to construct a PDA for L.

We can assume that L is given by a CNF grammar G =

(V,Σ, R, S).

We will design a PDA that simulates a leftmost derivation with

respect to G.
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Simulating Leftmost Derivation

Use symbol ⊥ to mark the bottom of stack.

After placing a string S⊥ (read from top to bottom) on top of
stack, repeat the following:

• Pop one symbol X from stack.

• If X = ⊥ enter a accept state.

• Otherwise, nondeterministically select a rule X → w.
• If w = a for some terminal a, read one input symbol; if
the symbol is a, continue; otherwise, stop.

• If w = AB, place AB on top of stack and continue.
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Do It in a PDA Way

• If there is a pending job from the previous step, do it and
continue.

• If at the initial state, place ⊥ and continue.

• Choose whether to read input or not; a ∈ Σǫ.

• Choose whether to read from stack or not; X ∈ Γǫ.

• If a 6= ǫ and X is a variable with rule X → a, continue.

• If a = ǫ and X = ⊥, enter the accept state.

• If a = ǫ, X is a variable, and there is a rule of the form
X → BC, select one rule place C on top of stack and in the
next step place B.
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