Chapter 3, Part 2

Variants of Turing Machines
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Multitape TMs

A multitape Turing machine is a Turing machine with additional
tapes with each tape is accessible individually, with the input on
the first tape, and with the others blank at the beginning.

For a k-tape Turing machine, the transition ¢ is a mapping from
QxT*toQ =xT*x {L,R}"
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Nondeterministic TMs

A nondeterministic Turing machine is one in which the transition
is mapping to the power set of Q x I' x {L, R}.

A nondeterministic Turing machine accepts an input if it enters
an accepting state for some computation path.
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Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent
single-tape Turing machine.
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Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent
single-tape Turing machine.

Proof From a k-tape TM M build a single-tape simulator S.

CSCh27, Chapter 3, Part 2 (© 2012 Mitsunori Ogihara 5



Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent
single-tape Turing machine.

Proof From a k-tape TM M build a single-tape simulator S.

The main idea is to use the tape available to represent

e the contents of the tape squares that the head has ever visited
for each tape, including the entire squares that initially hold
the input,

e and the current head position for each tape.

Create such a representation for each tape and connect them with
a delimiter in between, at the beginning, and at the end.
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Tape Encoding

For each a € T', let a be a new symbol to signify that a head is
located on the symbol.

e The input tape wy---w, U --- with the head scanning the
first symbol (this occurs at the beginning)

WLW9 * + * W,y

CSCh27, Chapter 3, Part 2 (© 2012 Mitsunori Ogihara 7



Tape Encoding

e If a tape holds a;---as U --- and the farthest position the
head has traveled is ¢t > r.
e |f the head position is < s, then its representation is:

a/lo..ar_lrsalroooa/sl!...!I.

t—s

e If the head position is r > s, then its representation is:

~

ap---agld- - JuUd: L.

r—s—1 t—r

The encoding never decreases in length.
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Delimiter

Use a new symbol # as a delimiter.

On input w = w;y - - - wy,, the initial form of encoding is:

Hwrwy - wn FUFUFE - - - FU
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S’s Action

Memorize M's state using a state.

1. Construct the initial form.
2. Repeat the following:

(a) If M has accepted or rejected, accept or reject
accordingly.

(b) Otherwise, scan the tape in a direction and record,

using the state, the symbols being scanned by
the heads of ).

(c) Determine the next move of M.

(d) Modify the encoding accordingly. Insert symbols
if necessary.

(e) Change the state accordingly.
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Identification of Symbols Scanned

In the case when the tape is scanned from right to left, use the
following states.

L. (Pscan, @, @1y---,0Qk),01,...,a € ' This means that the
current state is g and the symbols being scanned are
ai,...,q.

2. (Pscans@s Ly evvy 0y QratyeeesQk)yQpaye.. ar € L This

means that for the first r tapes the symbols being scanned
are yet to be identified but for the others the symbols have
been identified to be a,11,...,ax.
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Identification of Symbols Scanned

In the case when the tape is scanned from right to left, use the
following states.

L. (Pscan, @, @1,---,0Qk),01,...,a € I':  This means that
the current state is ¢ and the symbols being scanned
are (Pscans @s Ly vvvs 2y QprityevesQk)yQpit,--.,ar € I This

means that for the first r tapes the symbols being scanned
are yet to be identified but for the others the symbols have
been identified to be a,11,...,ax.

Start scanning from the end in state (pscan, @, 7y .-+, 7).

Each time a symbol of the form X is encountered, replace the
rightmost 7 with that X.

When all ?’s are gone, S knows the action of M.

If forward motion is used, the symbols are from left to right.
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Tape Modification

This step consists of

e rewriting the symbol on the current head position and

e rewriting the symbols around the current head position to
move the head to the left or to the right.
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Tape Moadification Rules

e If the current contents are a:g a # #, b is to be
replaced by b/, and the head moves to the left, then replace
the two symbols by ab’.

e If the current contents are - - - #Z. .+, bis to be replaced by ¥/,
and the head moves to the left, then replace the two symbols
by #0'.

e If the current contents are Ea a # #, b is to be

replaced by b’, and the head moves to the right, then replace
the two symbols by b'a.
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Tape Maodification Rules (cont’d)

—~

e If the current contents are --- b4 ---, b is to be replaced by
b, and the head moves to the right, then replace the b# by
'L,

This triggers insertion:
e Use a state to remember the symbol to be inserted.

e Start by memorizing the very first insertion, L, and then
move to the right.

e While scanning to the right, swap the symbol to be
inserted and the symbol stored in the tape cell.

e Keep scanning until the LI after the very last symbol of
the encoding.
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Insertion

#1X|Y|Z VIA|B L
Change Y to

Y'D
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Insertion

#1X|Y'|Z|U VI IA|B NI .
Must Insert D

Here
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Insertion

D

U

Must Insert Z

f

Here
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Insertion

Z

#

VIA|B

f

Must Insert U

Here
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Insertion

#| X|Y'|ID|Z|U|V|A|B

f

Must Insert #
Here
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Insertion

#1A

B

f

Must Insert V

Here
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Insertion

#1V

B

C

Must Insert A

f

Here
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Insertion

#|V]A

C

Must Insert B

f

Here
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Insertion

B

#

Must Insert C

f

Here
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Insertion

C

Must Insert #

f

Here
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Insertion
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Equivalence Between NTMs and TMs
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an
equivalent deterministic Turing machine.
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an
equivalent deterministic Turing machine.

Proof We may assume that IV is a single-tape machine — we
can use the same proof as before.
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an
equivalent deterministic Turing machine.

Proof We may assume that IV is a single-tape machine — we
can use the same proof as before.

We will construct a three-tape simulator D of V.

CSCh27, Chapter 3, Part 2 (© 2012 Mitsunori Ogihara 30



Construction

Let ' be a constant such that each transition has at most C
possible values. Let © = {ay,a9,...,ac}.

Use a word p € ©F to encode a nondeterministic path, where
for all © > 1 and j, 1 < j < b, if the i-th symbol of p is a;, then
It specifies at step 7, M must choose the j-th possibility from all
possible moves available at that point (if such one exists).

The word p over © is a valid computation path of NV on input
w if N on w halts according to the choices written on p.
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Three-tape Simulation

Use Tape 1 to store the input, Tape 2 to simulate the tape of IV,
and Tape 3 to keep an encoding of a computation path.

Define the lexicographic order of paths:
ULy vy Ug < V1, ..., U € OF if and only if either

o s<tor
e s = t and there exists some k, 1 < k < s, such that
UL = V1., Up—1 = Vk—1, and up < V.
Here u; < vp is evaluated according to a fixed ordering of letters

In ©.
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An Algorithm for N

On input w, write the word #a; on Tape 3, then repeat:

1. Copy the input onto Tape 2.

2. Try to simulate NV on w using the word in Tape 3 as the
path. If successful and if NV has accepted, then accept and
halt.

3. Modify the path to the next smallest path by
incrementing it.

4. Erase Tape 2.
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Some Additional Results

Corollary. A language is Turing-recognizable if and only if it
Is recognized by a multitape TM.

Corollary. A language is Turing-recognizable if and only if it
iIs recognized by an NTM.
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Enumerators

An enumerator of a language A is a TM with a special output
tape such that the machines write on the output tape all the
members of A with a special symbol # as a delimiter.
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Enumerators

An enumerator of a language A is a TM with a special output
tape such that the machines write on the output tape all the
members of A with a special symbol # as a delimiter.

Theorem. A language is Turing-recognizable if and only if it
has an enumerator.
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Enumerators

An enumerator of a language A is a TM with a special output
tape such that the machines write on the output tape all the
members of A with a special symbol # as a delimiter.

Theorem. A language is Turing-recognizable if and only if it
has an enumerator.

Proof The “if" part: Simulate the enumerator, and accept when
the input word is produced by the enumerator.

The “only if" part: Simulate a recognizer R. For i =1,2,..., for
each w of lexicographic order of at most ¢, simulate M on w for ¢
steps and outputs w if M accepts w in 7 steps. []
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Description of Objects

We assume that there is a systematic way of describing computing
devices as well as their inputs. For example, a Turing machine M
can be described by putting down in symbols states, symbols, and
transition. We fix such an encoding system. We will use (M) to
represent the encoding of M.
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Description of Multiple Objects

To encode multiple objects in a sequence, we simply concatenate
the encodings of the objects in order with a special delimiter in
between.
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Description of Multiple Objects

To encode multiple objects in a sequence, we simply concatenate
the encodings of the objects in order with a special delimiter in
between.

Special Requirement For Turing machines M and N, (M){(N) is
a representation of a Turing machine that executes M's program
first and when M accepts immediately jumps into N's program.

This concept will be used in Chapter 6.
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