
Chapter 3, Part 2

Variants of Turing Machines
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Multitape TMs

A multitape Turing machine is a Turing machine with additional

tapes with each tape is accessible individually, with the input on

the first tape, and with the others blank at the beginning.

For a k-tape Turing machine, the transition δ is a mapping from

Q× Γk to Q× Γk × {L,R}k.
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Nondeterministic TMs

A nondeterministic Turing machine is one in which the transition

is mapping to the power set of Q× Γ× {L,R}.

A nondeterministic Turing machine accepts an input if it enters

an accepting state for some computation path.

CSC527, Chapter 3, Part 2 c© 2012 Mitsunori Ogihara 3



Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent

single-tape Turing machine.
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Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent

single-tape Turing machine.

Proof From a k-tape TM M build a single-tape simulator S.
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Equivalence Between Single-tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent

single-tape Turing machine.

Proof From a k-tape TM M build a single-tape simulator S.

The main idea is to use the tape available to represent

• the contents of the tape squares that the head has ever visited
for each tape, including the entire squares that initially hold
the input,

• and the current head position for each tape.

Create such a representation for each tape and connect them with

a delimiter in between, at the beginning, and at the end.
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Tape Encoding

For each a ∈ Γ, let ã be a new symbol to signify that a head is

located on the symbol.

• The input tape w1 · · ·wn ⊔ · · · with the head scanning the
first symbol (this occurs at the beginning)

w̃1w2 · · ·wn.
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Tape Encoding

• If a tape holds a1 · · · as ⊔ · · · and the farthest position the
head has traveled is t > r.

• If the head position is r < s, then its representation is:

a1 · · · ar−1r̃sar · · · as⊔ · · · ⊔︸ ︷︷ ︸
t−s

.

• If the head position is r > s, then its representation is:

a1 · · · as⊔ · · · ⊔︸ ︷︷ ︸
r−s−1

⊔̃ ⊔ · · · ⊔︸ ︷︷ ︸
t−r

.

The encoding never decreases in length.
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Delimiter

Use a new symbol # as a delimiter.

On input w = w1 · · ·wn, the initial form of encoding is:

#w̃1w2 · · ·wn#⊔̃#⊔̃# · · · #⊔̃#
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S’s Action

Memorize M ’s state using a state.

1. Construct the initial form.

2. Repeat the following:
(a) If M has accepted or rejected, accept or reject

accordingly.

(b) Otherwise, scan the tape in a direction and record,
using the state, the symbols being scanned by
the heads of M .

(c) Determine the next move of M .

(d) Modify the encoding accordingly. Insert symbols
if necessary.

(e) Change the state accordingly.
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Identification of Symbols Scanned

In the case when the tape is scanned from right to left, use the
following states.

1. (pscan, q, a1, . . . , ak), a1, . . . , ak ∈ Γ: This means that the
current state is q and the symbols being scanned are
a1, . . . , ak.

2. (pscan, q, ?, . . . , ?, ar+1, . . . , ak), ar+1, . . . , ak ∈ Γ: This
means that for the first r tapes the symbols being scanned
are yet to be identified but for the others the symbols have
been identified to be ar+1, . . . , ak.
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Identification of Symbols Scanned

In the case when the tape is scanned from right to left, use the
following states.

1. (pscan, q, a1, . . . , ak), a1, . . . , ak ∈ Γ: This means that
the current state is q and the symbols being scanned
are (pscan, q, ?, . . . , ?, ar+1, . . . , ak), ar+1, . . . , ak ∈ Γ: This
means that for the first r tapes the symbols being scanned
are yet to be identified but for the others the symbols have
been identified to be ar+1, . . . , ak.

Start scanning from the end in state (pscan, q, ?, . . . , ?).

Each time a symbol of the form X̂ is encountered, replace the

rightmost ? with that X.

When all ?’s are gone, S knows the action of M .

If forward motion is used, the symbols are from left to right.
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Tape Modification

This step consists of

• rewriting the symbol on the current head position and

• rewriting the symbols around the current head position to
move the head to the left or to the right.
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Tape Modification Rules

• If the current contents are · · · ab̃ · · · , a 6= #, b is to be
replaced by b′, and the head moves to the left, then replace
the two symbols by ãb′.

• If the current contents are · · ·#b̃ · · · , b is to be replaced by b′,
and the head moves to the left, then replace the two symbols
by #b̃′.

• If the current contents are · · · b̃a · · · , a 6= #, b is to be
replaced by b′, and the head moves to the right, then replace
the two symbols by b′ã.
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Tape Modification Rules (cont’d)

• If the current contents are · · · b̃# · · · , b is to be replaced by
b′, and the head moves to the right, then replace the b̃# by
b′⊔̃#.

This triggers insertion:
• Use a state to remember the symbol to be inserted.

• Start by memorizing the very first insertion, ⊔̃, and then
move to the right.

• While scanning to the right, swap the symbol to be
inserted and the symbol stored in the tape cell.

• Keep scanning until the ⊔ after the very last symbol of
the encoding.
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Insertion

X Y Z U # V A B C

Change Y to 
Y'D

# #
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Insertion

X Y' Z U # V A B C

Must Insert D 

Here

# #
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Insertion

Y' D U # V A B C

Must Insert Z 

Here

# #
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Insertion

X Y' D Z # V A B C

Must Insert U 

Here

# #
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Insertion

X Y' D Z U V A B C

Must Insert # 

Here

# #
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Insertion

X Y' D Z U # A B C

Must Insert V 

Here

# #
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Insertion

X Y' D Z U # V B C

Must Insert A 

Here

# #
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Insertion

X Y' D Z U # V A C

Must Insert B 

Here

# #
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Insertion

X Y' D Z U # V A

Must Insert C 

Here

# #
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Insertion

X Y' D Z U # V A

Must Insert # 

Here

# C
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Insertion

X Y' D Z U # V A

Done

# C #
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Equivalence Between NTMs and TMs
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an

equivalent deterministic Turing machine.
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an

equivalent deterministic Turing machine.

Proof We may assume that N is a single-tape machine — we

can use the same proof as before.
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Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an

equivalent deterministic Turing machine.

Proof We may assume that N is a single-tape machine — we

can use the same proof as before.

We will construct a three-tape simulator D of N .
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Construction

Let C be a constant such that each transition has at most C

possible values. Let Θ = {a1, a2, . . . , aC}.

Use a word p ∈ Θ∗ to encode a nondeterministic path, where

for all i ≥ 1 and j, 1 ≤ j ≤ b, if the i-th symbol of p is aj, then

it specifies at step i, M must choose the j-th possibility from all

possible moves available at that point (if such one exists).

The word p over Θ is a valid computation path of N on input

w if N on w halts according to the choices written on p.
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Three-tape Simulation

Use Tape 1 to store the input, Tape 2 to simulate the tape of N ,

and Tape 3 to keep an encoding of a computation path.

Define the lexicographic order of paths:
u1, . . . , us < v1, . . . , vt ∈ Θ∗ if and only if either

• s < t or

• s = t and there exists some k, 1 ≤ k ≤ s, such that
u1 = v1, . . . , uk−1 = vk−1, and uk < vk.

Here uk < vk is evaluated according to a fixed ordering of letters

in Θ.
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An Algorithm for N

On input w, write the word #a1 on Tape 3, then repeat:

1. Copy the input onto Tape 2.

2. Try to simulate N on w using the word in Tape 3 as the
path. If successful and if N has accepted, then accept and
halt.

3. Modify the path to the next smallest path by
incrementing it.

4. Erase Tape 2.
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Some Additional Results

Corollary. A language is Turing-recognizable if and only if it

is recognized by a multitape TM.

Corollary. A language is Turing-recognizable if and only if it

is recognized by an NTM.
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Enumerators

An enumerator of a language A is a TM with a special output

tape such that the machines write on the output tape all the

members of A with a special symbol # as a delimiter.
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Enumerators

An enumerator of a language A is a TM with a special output

tape such that the machines write on the output tape all the

members of A with a special symbol # as a delimiter.

Theorem. A language is Turing-recognizable if and only if it

has an enumerator.
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Enumerators

An enumerator of a language A is a TM with a special output

tape such that the machines write on the output tape all the

members of A with a special symbol # as a delimiter.

Theorem. A language is Turing-recognizable if and only if it

has an enumerator.

Proof The “if” part: Simulate the enumerator, and accept when

the input word is produced by the enumerator.

The “only if” part: Simulate a recognizer R. For i = 1, 2, . . ., for

each w of lexicographic order of at most i, simulate M on w for i

steps and outputs w if M accepts w in i steps.
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Description of Objects

We assume that there is a systematic way of describing computing

devices as well as their inputs. For example, a Turing machine M

can be described by putting down in symbols states, symbols, and

transition. We fix such an encoding system. We will use 〈M〉 to

represent the encoding of M .
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Description of Multiple Objects

To encode multiple objects in a sequence, we simply concatenate

the encodings of the objects in order with a special delimiter in

between.
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Description of Multiple Objects

To encode multiple objects in a sequence, we simply concatenate

the encodings of the objects in order with a special delimiter in

between.

Special Requirement For Turing machines M and N , 〈M〉〈N〉 is

a representation of a Turing machine that executes M ’s program

first and when M accepts immediately jumps into N ’s program.

This concept will be used in Chapter 6.
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