
Chapter 4, Part 1

Decidability

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 1

Decidable Problems About Regular Languages

The Acceptance Problem for DFA

Define ADFA to be:

{〈B,w〉 | B is a DFA that accepts input string w}.

Theorem. ADFA is decidable.

Proof A Turing machine can, given an input x, try to decode x

into an NFA B and a string w. If the decoding is successful then

it can test whether B accepts w by simulating B on w.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 2

How This Can Be Done

• After checking the legitimacy of encoding, our Turing machine
writes on its second tape the input w (as an encoded form).

• Our machine starts simulating M , using the second tape as
the tape of M by looking up information about M ’s action
in the first tape and using a tape symbol encoding scheme
consistent with the input x.

When M terminates, our machine terminates accordingly.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 3

The Acceptance Problem for NFA

Define ANFA to be:

{〈B,w〉 | B is an NFA that accepts input string w}.

Theorem. ANFA is decidable.

Proof Given an input x, try to decode x into an NFA B and a
string w. If “successful” then:

1. Convert B to a DFA C.

2. Run the machine for ADFA on 〈C,w〉. If the machine accepts,
then accept; otherwise reject.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 4

The Acceptance Problem for Regular Exp.

Define AREX to be:

{〈R,w〉 | R is a regular expression that produces w}.

Theorem. AREX is decidable.

Proof Given an input x, try to decode x into a regular expression
R and a string w. If “successful” then:

1. Convert R to a DFA C.

2. Run the machine for ADFA on 〈C,w〉. If the machine accepts,
then accept; otherwise reject.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 5

The Emptiness Problem for DFA

Define EDFA = {〈A〉 | A is a DFA that accepts no string }.

Theorem. EDFA is decidable.

Proof Given an input x, try to decode a DFA A out of x. If
“successful” then:

1. Mark the start state of A.

2. Repeat until no new states are marked:

− Mark any unmarked state that has a transition

from a marked state

3. Accept if no final state is marked; reject otherwise.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 6

The Equivalence Problem for DFA

Define EQDFA to be:

{〈A,B〉 | A and B are DFA and accept the same language }.

Theorem. EQDFA is decidable.

Proof Given a string x, try to decode x into a pair of DFAs A

and B. If “successful” then construct a DFA C that accepts the

symmetric difference of L(A) and L(B),

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)),

and test the emptiness of L(C).

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 7

The Acceptance Problem for CFG

Define ACFG = {〈G,w〉 | G is a CFG that generates w}.

Theorem. ACFG is decidable.

Proof Given an input x, try to decode x into a CFG G and a
string w. If “successful” then:

1. Convert G to an equivalent Chomsky normal form grammar
G′.

2. List all derivations with 2n− 1 steps, where n = |w|.

3. If any of the listed derivations generate w, then accept;
otherwise, reject.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 8

The Emptiness Problem for CFG

Define ECFG = {〈G〉 | G is a CFG such that L(G) = ∅}.

Theorem. ECFG is decidable.

Proof Given x, first try to decode a grammar G out of it. If
“pass” then test the ability of generating terminal strings:

1. Mark all the terminals.

2. Repeat the following until no new symbols are marked:
− Mark any variables A with a production A → w

such that all symbols in w are marked.

3. Accept if the start symbol is marked; reject otherwise.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 9

Context-Free Languages are Decidable

Theorem. Every context-free language is decidable.

Simulation of a PDA may not halt.

Proof Use the machine M for ACFG. Let G be a fixed CFG.
The machine for L(G), on input w,

1. run 〈G,w〉 on M , and

2. accepts if M accepts and rejects otherwise.

CSC527 Chapter 4, Part 1 c© 2012 Mitsunori Ogihara 10

