Chapter 4, Part 1

Decidability

Decidable Problems About Regular Languages

The Acceptance Problem for DFA

Define A_{DFA} to be:

 $\{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}.$

Theorem. $A_{\rm DFA}$ is decidable.

Proof A Turing machine can, given an input x, try to decode x into an NFA B and a string w. If the decoding is successful then it can test whether B accepts w by simulating B on w.

How This Can Be Done

- After checking the legitimacy of encoding, our Turing machine writes on its second tape the input w (as an encoded form).
- Our machine starts simulating M, using the second tape as the tape of M by looking up information about M's action in the first tape and using a tape symbol encoding scheme consistent with the input x.

When M terminates, our machine terminates accordingly.

Define $A_{\rm NFA}$ to be:

 $\{\langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w\}.$

Theorem. $A_{\rm NFA}$ is decidable.

Proof Given an input x, try to decode x into an NFA B and a string w. If "successful" then:

- 1. Convert B to a DFA C.
- 2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then **accept**; otherwise **reject**.

Define A_{REX} to be:

 $\{\langle R, w \rangle \mid R \text{ is a regular expression that produces } w\}.$

Theorem. A_{REX} is decidable.

Proof Given an input x, try to decode x into a regular expression R and a string w. If "successful" then:

- 1. Convert R to a DFA C.
- 2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then **accept**; otherwise **reject**.

The Emptiness Problem for DFA

Define $E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA that accepts no string } \}.$

Theorem. $E_{\rm DFA}$ is decidable.

Proof Given an input x, try to decode a DFA A out of x. If "successful" then:

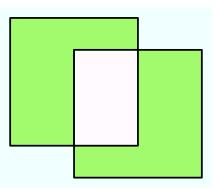
- 1. Mark the start state of A.
- 2. Repeat until no new states are marked:
 - Mark any unmarked state that has a transition from a marked state
- 3. Accept if no final state is marked; reject otherwise.

Define EQ_{DFA} to be:

 $\{\langle A, B \rangle \mid A \text{ and } B \text{ are DFA and accept the same language } \}.$ **Theorem.** EQ_{DFA} is decidable.

Proof Given a string x, try to decode x into a pair of DFAs A and B. If "successful" then construct a DFA C that accepts the symmetric difference of L(A) and L(B), $(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$,

and test the emptiness of L(C).



The Acceptance Problem for CFG

Define $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}.$

Theorem. $A_{\rm CFG}$ is decidable.

Proof Given an input x, try to decode x into a CFG G and a string w. If "successful" then:

- 1. Convert G to an equivalent Chomsky normal form grammar G'.
- 2. List all derivations with 2n-1 steps, where n = |w|.
- 3. If any of the listed derivations generate w, then **accept**; otherwise, reject.

The Emptiness Problem for CFG

Define $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG such that } L(G) = \emptyset \}.$

Theorem. $E_{\rm CFG}$ is decidable.

Proof Given x, first try to decode a grammar G out of it. If "pass" then test the ability of generating terminal strings:

- 1. Mark all the terminals.
- 2. Repeat the following until no new symbols are marked: — Mark any variables A with a production $A \rightarrow w$ such that all symbols in w are marked.
- 3. Accept if the start symbol is marked; reject otherwise.

Context-Free Languages are Decidable

Theorem. Every context-free language is decidable.

Simulation of a PDA may not halt.

Proof Use the machine M for A_{CFG} . Let G be a fixed CFG. The machine for L(G), on input w,

- 1. run $\langle G,w\rangle$ on M, and
- 2. accepts if M accepts and rejects otherwise.