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The Halting Problem
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The Halting Problem

Define ATM = {〈M,w〉 | M is a Turing machine and accepts w}.

Theorem. ATM is not decidable.
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From this theorem we obtain:

Corollary. ATM is not Turing-recognizable, and thus, not

decidable.
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The Halting Problem

Define ATM = {〈M,w〉 | M is a Turing machine and accepts w}.

Theorem. ATM is not decidable.

From this theorem we obtain:

Corollary. ATM is not Turing-recognizable, and thus, not

decidable.

For this corollary we need the following fact.

Fact. A language L is decidable if and only if both L and L

are Turing-recognizable.

Proof of Corollary ATM is Turing-recognizable and is not

decidable. So, ATM is Turing-recognizable Corollary
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Proof of Fact

Proof of Fact [⇒] Let L be decidable and let M be a Turing

machine that decides L. By swapping qaccept and qreject of M we

get a Turing machine M ′ that decides L. So both L and L are

Turing-decidable, and thus, Turing-recognizable.
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Proof of Fact (cont’d)

[⇐] Let L and L be recognized by TMs M1 and M2, respectively.
Define a two-tape machine M that, on input x, does the following:

1. M copies x onto Tape 2.

2. M repeats the following until either M1 or M2 accepts:
• M simulates one step of M1 on Tape 1 then one step of
M2 on Tape 2.

3. M accepts x if either M1 accepts x or M2 rejects x; M

rejects x if either M2 accepts x or M1 rejects x.

Then M decides L because for every x, at least one of of the two

machines halts on input x. Fact
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Diagonalization

A set S is countable if either it is finite or it has the same size as

N ; i.e., there is a one-to-one, onto correspondence between S

and N (or there is a bijection from S to N ).
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Simple Facts About the Countable

Let Q be the set of all positive rational numbers and let R be the

set of all positive real numbers.

Fact. Q is countable while R is not.
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Proving the Fact

Proof Each member of Q is expressed as a fraction m

n
such that

m,n ∈ N and gcd(m,n) = 1.

So we have only to come up with a bijection from N to the set

{m
n
| m,n ≥ 1&gcd(m,n) = 1}.
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Q is countable

We will visit all the grid points in the first quadrant of the xy-plane.

For p = 1, 2, 3, . . ., visit the points (x, y) on the line x+ y = p

(1, p− 1), (2, p− 2), . . . , (p− 1, 1)

and collect only those points at which x and y are relatively prime

to each other.
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Q is countable

1

4

3

2

7

8

5 9

6

The numbers show the visiting order. Number 5 is (2, 2) and thus

is skipped.
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R is not countable

Assume, by way of contradiction, that R is countable. Then the

real numbers can be enumerated as r1, r2, . . ..

Define x to be the number between 0 and 1 defined as follows:

(*) For each i ∈ N , the ith digit of x after the decimal point
is that of ri plus 1 (modulo 10).

For example, if r1 = 3.14159, r2 = 2.23606, r3 = 1.73205, . . .,

then x = .243 . . .,
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R is not countable

Assume, by way of contradiction, that R is countable. Then the

real numbers can be enumerated as r1, r2, . . ..

Define x to be the number between 0 and 1 defined as follows:

(*) For each i ∈ N , the ith digit of x after the decimal point
is that of ri plus 1 (modulo 10).

For example, if r1 = 3.14159, r2 = 2.23606, r3 = 1.73205, . . .,

then x = .243 . . .,

This x is real. By assumption there must exist a k such that rk
is x. However, by definition, the k-th digit of rk is different from

that of x, a contradiction.

Thus, R is not countable.
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An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-

recognizable.
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An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-

recognizable.

Proof Consider all Turing machines whose input alphabet is {0}.

Since each Turing machine can be encoded as a word of finite

length, this set of Turing machines is countable.

Let M1,M2, . . . be the enumeration of all Turing machines in this

set.
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An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-

recognizable.

Proof Consider all Turing machines whose input alphabet is {0}.

Since each Turing machine can be encoded as a word of finite

length, this set of Turing machines is countable.

Let M1,M2, . . . be the enumeration of all Turing machines in this

set.

Define L = {0i | Mi on input 0i does not accept }.
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An Immediate Application of Diagonalization (cont’d)

Define L = {0i | Mi on input 0i does not accept }.

There is no machine Mk that recognizes L. Why?

If there were such a k, then we have by definition of L

0k ∈ L ⇔ Mk does not accept 0k.

However, the latter condition, by the definition of k, is equivalent

to 0k 6∈ L(Mk). Since L(Mk) = L, it is equivalent to 0k 6∈ L.

Thus, we have

0k ∈ L ⇔ 0k 6∈ L,

a contradction.
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Proof of Theorem (ATM is not decidable)

Assume that ATM is decidable. Let T be a Turing machine that
decides ATM. Define D to be a machine that, on input w,

1. Check whether w is a legal encoding of some Turing machine,
say M . If not, immediately reject w.

2. Simulate T on 〈M, 〈M〉〉.

3. If T accepts, then reject; otherwise, accept.

Since T decides ATM by assumption, M always halts; so does D.

For every Turing machine M ,

D accepts 〈M〉 ⇔ M does not accept 〈M〉

With M = D, we have

D accepts 〈D〉 ⇔ D does not accept 〈D〉.

This is a contradiction.
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