
Chapter 7, Part 2

Classes P and NP

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 1

The Complexity Class P

Juris Hartmanis and Dick Stearns [1965] : proposed computational

complexity — measuring complexity of problems by the number

of steps (or the number of cells) expended in the worst case under

the TM model

Fundamental results in the Hartmanis-Stearns paper:

1. Time Hierarchy Theorem (see Section 9.1) · · ·

TIME(t(n)) 6= TIME(t(n)2) for all reasonable t(n)

2. Linear Speed-up Theorem · · ·

TIME(t(n)) = TIME(ct(n)) for all c > 0 and all reasonable

t(n)

A better hierarchy theorem is proven by Harry Lewis and Stearns

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 2

The Complexity Class P (continued)

Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin

[1966] suggested the “polynomial time” as a broad classification

of problems that are solvable in a reasonable amount of time

P =
⋃

k>0TIME(nk)

Why polynomial, why not, say n3?

Because the “polynomial time” is invariant under the model of

computation

NP is the nondeterministic counterpart of P

NP =
⋃

k>0NTIME(nk)

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 3

Problems in P

The Path Problem

Input A directed graph G = (V,E) and s, t, 1 ≤ s, t ≤ |V |

Question Does the graph has a directed path from s to t?

We define PATH to be the set of all positive instances 〈G, s, t〉 to

the Path Problem.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 4

The Path Problem

An encoding of a graph can be its adjacency matrix (aij):

for every i, j, 1 ≤ i, j ≤ n, aij = 1 if (i, j) ∈ E and 0 otherwise

The entire encoding can be

0n#a1a2 · · · an#0s#1t,

where a1, a2, . . . , an are the rows of the adjacency matrix

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 5

A Polynomial Time Algorithm for PATH

Let G = (V,E) be an instance of PATH , n = |V |, and A the

adjacency matrix of G.

For each k ≥ 1, let A(k) be the k-th power of the matrix A, where

∨ and ∧ replace + and ×.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 6

A Polynomial Time Algorithm for PATH

Let G = (V,E) be an instance of PATH , n = |V |, and A the

adjacency matrix of G.

For each k ≥ 1, let A(k) be the k-th power of the matrix A, where

∨ and ∧ replace + and ×.

Then for every k ≥ 1 and every i, j, 1 ≤ i, j ≤ n, the (i, j)th

entry of A(k) is a 1 if and only if there is a directed path

from i to j of length at most k in G.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 7

Algorithm for PATH

• Compute B = A(n) by iterative multiplication; that is,
compute A(1) = A,A(2), A(3), A(4), . . . by multiplying A by
the previous matrix.

• if the (s, t)th entry of B = 1 accept ; else reject

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 8

Running Time on a Multi-tape Turing Machine

• We have only to compute the transpose of A(i).
- The initial one can be obtained by transposing the input
matrix A, which requires O(n3) steps.

- For the other matrices, that is done by controlling the
order in which the entries are computed.

• There are n2 entries per matrix.

• There are n− 1 matrix multiplications.

• 2n bits are examined to compute an entry of one product.

Thus, the running time is O(n4) step algorithm

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 9

Testing Relative Primality of Two Numbers

The Relative Primality Problem

Input Integers x, y ≥ 1.

Question Are x and y relatively prime to each other, i.e.,
gcd(x, y) = 1?

Define RELPRIME to be the set of all positive instances 〈x, y〉

of the Relative Primality Problem.

Note: x and y should not be encoded in unary

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 10

A Polynomial Time Algorithm for RELPRIME

Use the Euclidean Algorithm: On input 〈x, y〉:

1. repeat x← x mod y; swap x and y; until y = 0

2. output x

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 11

How Quickly Does x Decrease?

Suppose x has value u, y has value v, v ≤ u, after one iteration of

the above algorithm, the value of x becomes u′ and the value of

y becomes v′. and after another iteration of the above algorithm,

the value of x becomes u′′ and the value of y becomes v′′.

We have:

• u′ = v,

• if v > u/2, then v′ = u mod v = u− v < u/2;

• if v ≤ u/2, then v′ ≤ v − 1 < u/2.

So, we have

• u′′ = v′ < u/2,

• v′′ < u′/2 = v/2.

This implies that in two iterations, both x and y will be less than

half of what they are now.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 12

Running Time Analysis

If max{|x|, |y|} = n, then the running time is O(n3).

(*) if the Euclid algorithm on 〈x, y〉 outputs 1 then accept ;
else reject

The Running Time Analysis: O(n3).

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 13

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 14

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

Proof Let L be context-free. Let G be a CNF grammar for L.

Suppose w = w1 · · ·wn be a string whose membership in L we are

testing.

The case when w = ǫ is easy: we accept if and only if S → ǫ is a

in G.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 15

The Nonempty Case

So, assume w 6= ǫ and let w1, . . . , wn be the symbols of w.

For each i, j, 1 ≤ i ≤ j ≤ n, let t(i, j) be the set of all variables

from which wi · · ·wj can be produced.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 16

The Nonempty Case

So, assume w 6= ǫ.

For each i, j, 1 ≤ i ≤ j ≤ n, let t(i, j) be the set of all variables

from which wi · · ·wj can be produced

We can compute t(i, j) for all i, j, 1 ≤ i ≤ j ≤ n, using

dynamic programming.

Then test the membership by examining whether S ∈ t(1, n)

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 17

Dynamic Programming for Computing the Table

Set t(i, i) ← the set of all A such that A → wi is in G. Then

execute the following:

for ℓ = 2 to n

for i = 1 to n− ℓ+ 1

j = i+ ℓ− 1; t(i, j) = ∅;

for k = i to j − 1

if ∃A,B ∈ t(i, k), C ∈ t(k + 1, j)

such that A→ BC is in G

then add A to t(i, j)

The running time is O(n3) since ℓ, i, and k have at most n possible

values.

The size of t(i, j) is at most the number of variables of G, but

that is a constant since G is fixed.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 18

Examples of NP Languages

The Hamilton Path Problem

Input A directed graph G = (V,E) and s, t ∈ V , s 6= t

Question Is there a Hamilton Path from s to t in G, i.e., a directed
path from s to t that visits all the nodes exactly once?

Define HAMPATH to be the set of all positive instances 〈G, s, t〉

to the Hamilton Path Problem.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 19

The Class NP

The Compositeness Problem

Input Integer x ≥ 1

Question Does x a composite number, i.e., have an integer divisor
other than 1 and x?

Define COMPOSITES to be the set of all composite numbers x.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 20

A Characterization of NP by Verifiers

A verifier of a language A is an algorithm V such that

A = {w | V accepts 〈w, c〉 for some c}.

That is, a verifier is an algorithm that takes two inputs w and c
and decides whether to accept or reject in such a way that:

• If w ∈ A, there is an auxiliary input c that makes the verifier
accept and

• If w 6∈ A, there is no auxiliary input c that makes the verifier
accept .

For a fixed V , the string c witnessing to w ∈ A (that is, one such

that V accepts 〈w, c〉) is called a certificate or a proof.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 21

An Alternative Definition of NP

We will measure the time of V in terms of the length of w.

Definition. (alternate) NP is the class of languages that

have polynomial time verifiers.

This means that polynomial time verifies reject (input, proof-

candidate) pairs in which the proof candidate is exceedingly long.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 22

Equivalence Between the Two Definitions of NP

Theorem. The alternative definition is equivalent to the first

definition of NP.

Proof (Sketch) If L has a polynomial time verifier, then we can

construct a nondeterministic Turing machine that nondeterministic

guesses a proof of length bounded by some fixed polynomial and

then verifies the proof.

If L is accepted by a polynomial time nondeterministic Turing

machine, we can use the accepting computation paths of the

machine as the proofs of membership.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 23

Membership of HAMPATH in NP

Define a certificate for each 〈G, s, t〉 ∈ HAMPATH to be any
sequence 〈v1, ..., vn〉 of nodes such that

(i) for every i, 1 ≤ i ≤ n, i = vj for some j,

(ii) s = v1,

(iii) t = vn, and

(iv) for every i, 1 ≤ i ≤ n− 1, (vi, vi+1) ∈ E.

A correct certificate can be of length O(n log n) and verification

can be done in O(n3) steps.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 24

Membership in NP

Define a certificate for each x ∈ COMPOSITES to be any number

y such that y divides x and 1 < y < x. Then a correct certificate

can be of length O(n)

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 25

More Problems in NP: Clique

The Clique Problem

Input A graph G = (V,E) and k ≥ 1.

Question Does G contain a complete graph of size ≥ k?

Define CLIQUE to be the set of all positive instances 〈G, k〉 to

the Clique Problem.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 26

Membership in NP

Theorem. CLIQUE is in NP.

Proof (Sketch) Define a certificate for an instance 〈G, k〉, where

G is an n node graph, to be an n bit sequence c = c1 · · · cn such

that:

Exactly k of c1, . . . , cn are 1s and for every i, j, 1 ≤ i < j ≤ n,

if ci = cj = 1, then (i, j) ∈ E

Then verification can be done in O(n3) steps.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 27

More Problems in NP: Subset Sum

The Subset Sum Problem

Input integers x1, . . . , xk and t

Question Is there a subset of {x1, . . . , xk} that adds up to t?

Define SUBSET -SUM to be the set of all positive instances 〈S, t〉

to the Subset Sum Problem.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 28

Membership in NP

Theorem. SUBSET -SUM is in NP.

Proof (Sketch) Define a certificate for an instance 〈S, t〉 with

|S| = n in SUBSET -SUM to be an n bit sequence such that
∑n

i=1 cixi = t

Then verification can be done in O(n2) steps.

CSC527, Chapter 7, Part 2 c© 2012 Mitsunori Ogihara 29

