Chapter 7, Part 2

Classes P and NP

CSC527, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

The Complexity Class P

Juris Hartmanis and Dick Stearns [1965] : proposed computational
complexity — measuring complexity of problems by the number

of steps (or the number of cells) expended in the worst case under
the TM model

Fundamental results in the Hartmanis-Stearns paper:

1. Time Hierarchy Theorem (see Section 9.1) - - -

TIME(t(n)) # TIME(t(n)?) for all reasonable (n)

2. Linear Speed-up Theorem - - -

TIME(t(n)) = TIME(ct(n)) for all ¢ > 0 and all reasonable
t(n)

A better hierarchy theorem is proven by Harry Lewis and Stearns

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 2

The Complexity Class P (continued)

Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin
[1966] suggested the “polynomial time” as a broad classification
of problems that are solvable in a reasonable amount of time

P={J..0 TIME (n*)
Why polynomial, why not, say n>?

Because the “polynomial time” is invariant under the model of
computation

NP is the nondeterministic counterpart of P
NP = {J,. o NTIME(n*)

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 3

Problems in P

The Path Problem
Input A directed graph G = (V, F) and s,t, 1 < s,t < |V]|
Question Does the graph has a directed path from s to t7?

We define PATH to be the set of all positive instances (G, s, t) to
the Path Problem.

CSC527, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 4

The Path Problem

An encoding of a graph can be its adjacency matrix (a;,):
for every i,7,1 <1,j <mn, a;; =1if (i,5) € E and 0 otherwise

The entire encoding can be

On#CLlCLQ T an#()s#lt,
where aq,as, ..., a, are the rows of the adjacency matrix

CSC527, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

A Polynomial Time Algorithm for PATH

Let G = (V, E) be an instance of PATH, n = |V|, and A the
adjacency matrix of GG.

For each k > 1, let A(%) be the k-th power of the matrix A, where
V and A replace + and Xx.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

A Polynomial Time Algorithm for PATH

Let G = (V, E) be an instance of PATH, n = |V|, and A the
adjacency matrix of GG.

For each k > 1, let A(%) be the k-th power of the matrix A, where
V and A replace + and Xx.

Then for every kK > 1 and every 4,7, 1 < 4,5 < n, the (i,j)th
entry of A¥) is a 1 if and only if there is a directed path
from 7 to 5 of length at most %k in G.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 7

Algorithm for PATH

e Compute B = An) by iterative multiplication; that is,
compute A = A, A®) AB) AW by multiplying A by
the previous matrix.

e if the (s,t)th entry of B =1 accept ; else reject

CSC527, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

Running Time on a Multi-tape Turing Machine

e We have only to compute the transpose of A,
- The initial one can be obtained by transposing the input
matrix A, which requires O(n?) steps.

- For the other matrices, that is done by controlling the

order in which the entries are computed.

2 entries per matrix.

e There are n
e There are n — 1 matrix multiplications.

e 2n bits are examined to compute an entry of one product.

Thus, the running time is O(n*) step algorithm

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 9

Testing Relative Primality of Two Numbers

The Relative Primality Problem
Input Integers x,y > 1.

Question Are x and vy relatively prime to each other, i.e.,
ged(z,y) = 17

Define RELPRIME to be the set of all positive instances (z,y)
of the Relative Primality Problem.

Note: x and y should not be encoded in unary

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 10

A Polynomial Time Algorithm for RELPRIMFE

Use the Euclidean Algorithm: On input (z,y):

1. repeat x < xr mod y; swap z and y; until y =0
2. output =

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

11

How Quickly Does = Decrease?

Suppose x has value u, y has value v, v < u, after one iteration of
the above algorithm, the value of & becomes «’ and the value of
y becomes v’. and after another iteration of the above algorithm,
the value of x becomes u” and the value of y becomes v”.

We have:
o u =,
o if v >u/2 thenv =umodv=u—v<u/2;
o if v <wu/2 thenv' <wv—1<u/2
So, we have
o ' =1 < u/2,
o V' <u'/2=1v/2.
This implies that in two iterations, both x and y will be less than
half of what they are now.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 12

Running Time Analysis

If max{|z|,|y|} = n, then the running time is O(n?).

(*) if the Euclid algorithm on (x,y) outputs 1 then accept ;
else reject

The Running Time Analysis: O(n?).

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 13

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

CSC527, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara

14

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

Proof Let L be context-free. Let G be a CNF grammar for L.

Suppose w = w; - - - w,, be a string whose membership in L we are
testing.

The case when w = € is easy: we accept if and only if S — € is a
in G.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 15

The Nonempty Case

So, assume w # € and let w1, ..., w, be the symbols of w.

For each 7,7,1 < ¢ < j < n, let t(¢,7) be the set of all variables
from which w; - --w; can be produced.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 16

The Nonempty Case

So, assume w # €.

For each 7,7,1 <1¢ < j < n, let t(¢,7) be the set of all variables
from which w; - --w; can be produced

We can compute t(i,5) for all 7,5, 1 < i < j < n, using
dynamic programming.

Then test the membership by examining whether S € t(1,n)

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 17

Dynamic Programming for Computing the Table

Set t(7,7) < the set of all A such that A — w; is in GG. Then
execute the following:

for/{=2ton
fori=1ton—/¢+1
j=i+£€—1;t(i,7) =0
fork=1toj—1
if 4A, B € t(i, k),C € t(k+ 1,)
such that A — BC isin G
then add A to (¢,)

The running time is O(n?) since £, 4, and k have at most n possible
values.

The size of t(¢,7) is at most the number of variables of G, but
that is a constant since GG is fixed.]

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 18

Examples of NP Languages

The Hamilton Path Problem
Input A directed graph G = (V,FE) and s,t € V, s # 1

Question Is there a Hamilton Path from sto ¢ in G, i.e., a directed
path from s to ¢ that visits all the nodes exactly once?

Define HAMPATH to be the set of all positive instances (G, s, t)
to the Hamilton Path Problem.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 19

The Class NP

The Compositeness Problem
Input Integer x > 1

Question Does x a composite number, i.e., have an integer divisor
other than 1 and z?

Define COMPOSITES to be the set of all composite numbers .

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 20

A Characterization of NP by Verifiers

A verifier of a language A is an algorithm V' such that
A ={w |V accepts (w,c) for some c}.

That is, a verifier is an algorithm that takes two inputs w and c
and decides whether to accept or reject in such a way that:

o If w € A, there is an auxiliary input ¢ that makes the verifier
accept and

o If w & A, there is no auxiliary input ¢ that makes the verifier
accept .

For a fixed V, the string ¢ witnessing to w € A (that is, one such
that V accepts (w, c¢)) is called a certificate or a proof.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 21

An Alternative Definition of NP

We will measure the time of V' in terms of the length of w.

Definition. (alternate) NP is the class of languages that
have polynomial time verifiers.

This means that polynomial time verifies reject (input, proof-
candidate) pairs in which the proof candidate is exceedingly long.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 22

Equivalence Between the Two Definitions of NP

Theorem. The alternative definition is equivalent to the first
definition of NP.

Proof (Sketch) If L has a polynomial time verifier, then we can
construct a nondeterministic Turing machine that nondeterministic
guesses a proof of length bounded by some fixed polynomial and
then verifies the proof.

If L is accepted by a polynomial time nondeterministic Turing
machine, we can use the accepting computation paths of the
machine as the proofs of membership. []

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 23

Membership of HAMPATH in NP

Define a certificate for each (G,s,t) € HAMPATH to be any
sequence (v, ..., U,) of nodes such that

(i) for every 7, 1 < ¢ <n, v = v, for some j,

(if) s = vy,

(ili) t = v,, and

(iv) forevery i, 1 <i<n—1, (v,v;11) € E.

A correct certificate can be of length O(nlogn) and verification
can be done in O(n?) steps.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 24

Membership in NP

Define a certificate for each x € COMPOSITES to be any number
y such that y divides x and 1 < y < x. Then a correct certificate

can be of length O(n)

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 25

More Problems in NP: Clique

The Clique Problem
Input A graph G = (V,E) and k > 1.
Question Does GG contain a complete graph of size > k7

Define CLIQUE to be the set of all positive instances (G, k) to
the Clique Problem.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 26

Membership in NP

Theorem. CLIQUE is in NP.

Proof (Sketch) Define a certificate for an instance (G, k), where

G is an n node graph, to be an n bit sequence ¢ = ¢; - - - ¢, such
that:

Exactly k of ¢1,...,¢c,, are 1s and for every 7,7, 1 <1< 5 <n,
if Ci = Cj = 1, then (Z,j) c kb

Then verification can be done in O(n?) steps. 0

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 27

More Problems in NP: Subset Sum

The Subset Sum Problem
Input integers 1, ..., xp and t
Question Is there a subset of {x1,...,z;} that adds up to 7

Define SUBSET-SUM to be the set of all positive instances (.5, t)
to the Subset Sum Problem.

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 28

Membership in NP

Theorem. SUBSET-SUM is in NP.

Proof (Sketch) Define a certificate for an instance (S,t) with
S| = n in SUBSET-SUM to be an n bit sequence such that

D i CiTi =t

Then verification can be done in O(n?) steps. 0

CSCh27, Chapter 7, Part 2 (© 2012 Mitsunori Ogihara 29

