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NP-Completeness
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The P=NP Problem

Is P = NP?

To study this question we look at the most difficult problems in

NP, called NP-complete problems.
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SAT

A Boolean formula is a formula of propositional logic, constructed

from variables and Boolean operations (∧, ∨, ¬)

A Boolean formula is satisfiable if there exists some assignment

to the variables that makes the formula evaluate to 1

Example: φ = (x ∧ y) ∨ (x ∧ z) is satisfiable. A satisfying

assignment is x = 1, y = 1, z = 0

φ = x ∧ x ∧ y is not satisfiable.
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The Main Theorem

The satisfiability problem is the problem of deciding whether a

given input Boolean formula is satisfiable

SAT = {φ | φ is a satisfiable Boolean formula }

Theorem. SAT ∈ P if and only if P = NP
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Polynomial Time Reductions

Definition. A function f is polynomial time computable if

there exists a polynomial time TM that halts on each input

x with only f(x) on the tape.

Definition. A language A is polynomial time mapping

reducible to a language B (write A ≤P B) if A is mapping

reducible to B via a polynomial time computable function.

CSC527, Chapter 7, Part 3 c© 2012 Mitsunori Ogihara 5



3SAT

A literal is a variable or its negation

A clause is the disjunction of some literals, e.g., x1 ∨ x3 ∨ x17

A Boolean formula is in conjunctive normal form if it is the

conjunction (∧) of some clauses

A 3CNF formula is a formula in the CNF-form in which each

clause consists of three literals

Theorem. 3SAT is polynomial time reducible to CLIQUE .
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Reducing 3SAT to CLIQUE

Given a formula φ of k three-literal clauses construct a graph

G = (V,E), where V = {〈i, j〉 | 1 ≤ i ≤ k, 1 ≤ j ≤ 3} and

E = {(〈i, j〉, 〈i′, j′〉) | (i 6= i′) and (the jth literal in the ith

clause) and (the j′th literal in the i′th clause) are either identical

to each other or use different variables

The graph for the formula φ =

(x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧

(x2 ∨ x4 ∨ x3).
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Reduction (cont’d)

Claim. G has a k-clique if and only if φ is satisfiable.

[⇒] Let S be a k-clique of G. Then S has a node from each

triple so that the selected nodes do not interfere with each

other as assignments.

[⇐] Let A be a satisfying assignment. Select from each triple a

literal that is satisfied by A to construct a set S. ‖S‖ = k and

it is a clique.

The mapping is polynomial time computable.

CSC527, Chapter 7, Part 3 c© 2012 Mitsunori Ogihara 8



NP-Completeness

Definition. A language A is NP-complete if A is in NP and

every language in NP is polynomial time reducible to A.

Theorem. If a language A is NP-complete, then A ∈ P if

and only if P = NP.

We may use the following to prove something is NP-complete.

Theorem. A language A is NP-complete, B ∈ NP, and

A ≤P B, then B is NP-complete.
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SAT is NP-Complete

Theorem. SAT is NP-complete.

Proof SAT ∈ NP. Consider a two-tape NTM that, on an input

φ of n variables, guesses and writes an assignment A on Tape

2 using nondeterministic moves, accepts if φ(A) = 1, and rejects

φ(A) = 0. Such a machine decides SAT and can be polynomial

time.
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The Converse

Suppose A is in NP. We show A ≤P SAT .

Note that there are some integer k > 0 and a one-tape NTM N

such that

• L(N) = A, and

• for all inputs x, N on input x halts within nk + k steps.

By convention we assume that once N enters qaccept, N keeps

moving its head to the right without changing the tape contents

or state.

We will use p(n) to denote nk + k + 2.
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Tableau

Let w be an input of length n. Define a tableau for N on w to be
a p(n) × p(n) table whose rows are members of #Γ∗QΓ∗# with
the following properties:

1. the columns 1 and p(n) are all #,
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Tableau

Let w be an input of length n. Define a tableau for N on w to be
a p(n) × p(n) table whose rows are members of #Γ∗QΓ∗# with
the following properties:

1. the columns 1 and p(n) are all #,

2. each row, excluding the first and the last symbols, is a
configuration of N ,
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Tableau

Let w be an input of length n. Define a tableau for N on w to be
a p(n) × p(n) table whose rows are members of #Γ∗QΓ∗# with
the following properties:

1. the columns 1 and p(n) are all #,

2. each row, excluding the first and the last symbols, is a
configuration of N ,

3. the first row represents the initial configuration of N on
w,
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Tableau

Let w be an input of length n. Define a tableau for N on w to be
a p(n) × p(n) table whose rows are members of #Γ∗QΓ∗# with
the following properties:

1. the columns 1 and p(n) are all #,

2. each row, excluding the first and the last symbols, is a
configuration of N ,

3. the first row represents the initial configuration of N on
w, and

4. for each i, 2 ≤ i ≤ p(n), the ith row results from the
(i− 1)st row applying one move of N
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Tableau

Let w be an input of length n. Define a tableau for N on w to be
a p(n) × p(n) table whose rows are members of #Γ∗QΓ∗# with
the following properties:

1. the columns 1 and p(n) are all #,

2. each row, excluding the first and the last symbols, is a
configuration of N with possible additional blanks at the
end,

3. the first row represents the initial configuration of N on
w, and

4. for each i, 2 ≤ i ≤ p(n), the ith row results from the
(i− 1)st row applying one move of N

A tableau is accepting if

5. the last row is an accepting configuration
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Encoding of Tableau

For all i, j, 1 ≤ i, j ≤ p(n), let cell [i, j] denote the jth element in

row i.

cell [i, j] has more than 2 possibilities, and so, we introduce a

boolean variable that represebnts each choice.

Let C = Q ∪ Γ ∪ {#}.

For each i, j, 1 ≤ i, j ≤ p(n), and s ∈ C, xi,j,s is the variable

representing condition cell [i, j] = s.

We demand for all i, j, that xi,j,s = true for exactly one s.
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General Technique

Let F1, . . . , Fk be Boolean formulas. Then, “exactly one of

F1, . . . , Fk is true” can be expressed as another Boolean formula:

(F1 ∨ · · · ∨ Fk) ∧ ¬((F1 ∧ F2) ∨ (F1 ∧ F3) ∨ · · · ∨ (Fk−1 ∧ Fk))

So, we have a formula for conditions like cell [i, j] = a and

cell [i, j] ∈ S where S is a finite set of symbols.
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Plan

We will encode Conditions 1 through 5 into Boolean formulas φ1

through φ5 and then construct φx = φ1 ∧ · · · ∧ φ5. We will map x

to φx.
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Condition 1: “#’s”

∧

1≤i≤p(n)

(cell [i, 1] = # ∧ cell [i, p(n)] = #) .

CSC527, Chapter 7, Part 3 c© 2012 Mitsunori Ogihara 20



Condition 5: “Accepting”

∨

1≤j≤p(n)

cell [p(n), j] = qaccept
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Condition 3: “Initial”

cell [1, 2] = q0

∧





∧

1≤j≤n

cell [1, 2 + j] = wj





∧





∧

n+3≤j≤p(n)−1

cell [1, j] = ⊔




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Condition 2: “Configuration”

∧

1≤i≤p(n)





∧

j,2≤j≤p(n)−1

(cell [i, j] ∈ Q ∪ Γ) ∧Bi





where Bi = “there is exactly one j, 2 ≤ j ≤ p(n) − 1 such that

cell [i, j] ∈ Q”
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Condition 4: “Step”

This is
∧

2≤i≤p(n)

∧

2≤j≤p(n)−1

Dij

Here Dij is the formula that states: In the 2 × 3 block of the

tableau

cell [i− 1, j − 1] cell [i− 1, j] cell [i− 1, j + 1]

cell [i, j − 1] cell [i, j] cell [i, j + 1]

(αij) if cell [i− 1, j] is in Q then the six cells encode the outcome
of a permissible action of N ; and

(βij) “if cell [i− 1, j], cell [i− 1, j − 1], cell [i− 1, j + 1] 6∈ Q then
cell [i − 1, j − 1] = cell [i, j − 1], cell [i − 1, j] = cell [i, j], and
cell [i− 1, j + 1] = cell [i, j + 1].”

The entire formula has length bounded a fixed polynomial in n.
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3SAT is NP-Complete

The formula in the tableau method can be converted to an

equivalent 3CNF formula

The formula constructed in the previous proof is trivially in CNF

except for the transition part, which is expressed as the conjunction

of Dij. Here Dij is αij ∧ βij and checks that the 2-by-3 block

located at (i, j) is valid.

Dij can be expressed either as

• the six cells are in one of valid combinations

• the six cells are not in any of invalid combinations.

There are only a constant number of invalid combinations, so we

will use the latter.
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Conversion

Suppose

(cell [i− 1, j − 1] = a, cell [i− 1, j] = b, cell [i− 1, j + 1] = c,

cell [i, j − 1] = d, cell [i, j] = e, cell [i, j + 1] = f)

is an in valid form. Then

(xi−1,j−1,a ∨ xi−1,j,b ∨ xi−1,j+1,c

∨xi,j−1,d ∨ xi,j,e ∨ xi,j+1,f)

expresses that these cells are not in that combination.

By taking the conjunction for all invalid combinations, we obtain

a CNF formula for Dij.
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Converting CNF to 3CNF

Conversion rules:

1. (x ∧ y) ∧ z is equivalent to x ∧ y ∧ z

2. (x ∨ y) ∨ z is equivalent to x ∨ y ∨ z

3. (x∨y∨z∨u) is equivalent to (x∨y∨w)∧(w ≡ (z∨u)). The
second term is equivalent to (w ∨ z ∨ u) ∧ (z ∨ w) ∧ (u ∨ w)

Repeat literals in clauses with < 3 literals to make the number of

literals equal to three.
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