
The Pumping Lemma Argument in the Court of Logic

Burt Rosenberg

March 2, 2017

Introduction

A language R has been accused of not being regular. Its guilt will be decided in the Court
of Logic. The case is argued in the court between an Advocate, defending R against the
charge of non-regularity, and a Prosecutor, trying to prove that charge. We will assume
that both the Advocate and the Prosecutor are diligent and skillful. There is also a Judge
in the Court of Logic. However, as the Judge must work completely by a fixed set of rules,
the role is merely symbolic.

The court has two principles: that the innocent is never unjustly condemned, and that
the guilty is not always be wrongly acquitted. That is: no regular language is ever classified
as non-regular, and non-regular languages are often distinguished from regular languages.
The principles are formalized by the definitions of perfection and incomplete efficacy.

Definition 0.1 (Perfection of Justice). There is an Advocate sufficiently skillful so that no
matter what argument is made by the Prosecutor, no innocent language is condemned, i.e.
no regular language is judged to be non-regular. Logic then demands that any language
found guilty of being non-regular will certainly be non-regular.

Definition 0.2 (Incomplete Efficacy of Justice). No matter what the argument of the
Advocate, the skillful Prosecutor can successfully prosecute some guilty languages, i.e. not
all non-regular languages are judged to be regular. However it is possible that some guilty
languages are acquitted.

Pumping Lemma Arguments

Perfect justice is possible by basing the court’s judgement on a property possessed by all
regular languages. Hopefully such a property is shared with few non-regular languages. One
such property is captured by the pumping lemma: all sufficiently long strings in an infinite
regular language can be pumped, i.e. each contains a substring that can be reinserted into
the string multiple times at the place of its occurrence while remaining a string in the
language.

The pumping lemma forms the basis for an argument made between the advocate and
prosector to achieve a perfect and efficient adjudication of regular languages.

1

Theorem 0.1 (The Pumping Lemma Argument). The Pumping Lemma Argument is a
protocol between an Advocate A and a Prosecutor P (in the presence of a fair Judge J)
to condemn or acquit a language R accused of begin non-regular. The protocol gives both
perfection of justice and incomplete efficacy of justice. It consists of the following steps.

1. A makes its opening remarks, by declaring an integer p.

2. P either concedes the case or presents his argument: a string w.

3. J ascertains that w is of length at least p and is in the language R, else J acquits.

4. A responds to P ’s argument by claiming w = xyz, with y a non-empty string and
|xy| < p.

5. P then either concedes the case or presents an integer i, claiming xyiz is not in the
language.

6. J then checks that xyiz is not in the language, and if so, judges R guilty as charged,
else J acquits.

Proof. We first show perfection.
We can assume R is regular. If R is finite, A announces a p larger than the length of

any string in R; then P cannot announce a satisfactory w hence J acquits. Else A builds
a machine M recognizing R and announces any p larger than the number of states in this
machine. No matter what string w is provided by P in response to p, A runs M on w and
identifies a repeated state. A divides the string w = xyz, where y is a substring of w which
begins and ends on the repeated state; and A announces this xyz. Since xyiz ∈ R for any
i, either P concedes, or J cannot verify the i provided, and J acquits.

We next show incomplete efficacy.
Not all languages are acquitted. The language,

R01 = {0i1i | i ≥ 0}

is not regular and it is not acquitted. P has only to present 0p1p ∈ R01 to A and A has no
response that can gain acquittal.

Some non-regular languages are acquitted. The language

Rabc = {aibjck | i, j, k ≥ 0 and if i = 1 then j = k}

can be shown to be non-regular by the Myhill-Nerode theorem. Any two strings in the
infinite set,

{ab2ici | i = 1, 2, , 3 . . .}

can be distinguished: If w1 = ab2i1ci1 and w2 = ab2i2ci2 for i1 6= i2, then w1c
i1 ∈ Rabc but

w2c
i1 6∈ Rabc.

2

However A can gain acquittal against any P as follows: Let A announce p = 1. P
responds with its best argument, some non-empty string w. A responds with w = xyz
where x the empty string, y is the length one string that is the first letter of w, and z being
the rest of w. J will acquit, as P can produce no i ≥ 0 that will cause yiz 6∈abc.

In the above proof, examples of incomplete efficacy were extreme examples. In the case
of R01, there is really only one sort of argument to make, one only needs to make it long
enough. Other examples require the Prosecutor to pick its argument with care else the
Advocate, by clever counter-argument, will gain acquittal of a non-regular language.

Example 0.1. The language,

R={w ∈ {0, 1}∗ | the number of 0’s and 1’s in w are equal }

is not regular. The Prosecutor should not make the argument w = (01)k, because the
Advocate will respond with y = 01. In which case the pumped strings are of the form
(01)k+i, and still in the language. Better the Prosecutor make the argument w = 0p1p, to
which the Advocate has no effective defense.

Example 0.2. The language

Rww = {ww |w ∈ {0, 1}∗, }

is not regular. The Prosecutor should not make the argument w = (01)k, because the
Advocate will respond with y = 0101. All pumped versions of w remain in Rww. Instead
the Prosecutor should argue w = 0p10p1, to which the Advocate has no effective defense.

Sufficiency of arguments

When arguing with the pumping lemma, both the Advocate and the Prosecutor must be
skillful and diligent. This means that the arguments of the winning side are presented
differently than the arguments of the losing side. The winning side need only present the
one argument that wins the case; however the argument of the losing side must be presented
in sufficient generality to convince the court that not just the particular argument given
did not prevail, but that no argument given could have prevailed.

In the case of acquitting a regular language, this means that the Advocate is the “there
exists” player, showing that it has at least one argument, while the Prosecutor is the “for
all” player that shows that no argument is a sufficient counter. When the tables are turned,
and it is a question of concluding guilt, then the Advocate is the “for all” player, showing
that it could not have argued better, and the Prosecutor is the “there exists” player that
only needs to present one winning argument.

3

Theorem 0.2 (Sufficient argument). To establish that a language R is regular, it must be
shown that the Advocate can always win the case against an arbitrarily skillful Prosecutor.
That is (omitting details for brevity),

∃p ∀w ∃y ∀i xyiz ∈ R.

Arguing the case of Regular languages, the Advocate is the “there exists” player and the
Prosecutor is the “for all” player. To establish that a language R is non-regular, it must be
shown that the Prosecutor can always win the case against an arbitrarily skillful Advocate.
That is (omitting details for brevity),

∀p ∃w ∀y ∃i xyiz 6∈ R

Arguing the case of non-regular languages, the Prosecutor is the “there exists” player and
the Advocate is the “for all” player.

Example 0.3. The language represented by the Regular Express a(bc)+ is regular. The
Advocate can argue in the particular, p = 5 and y = bc. The Prosecutor’s arguments must
be made sufficiently general as w = a(bc)k for k ≥ 2. Then,

∀i ≥ 0, xyiz = a(bc)(k−1)+i ∈ a(bc)+,

winning the case for the Advocate.

Example 0.4. The language represented by aibjai with i, j ≥ 1 is non-regular. The
Advocate must argue in general as p ≥ 0 and the Prosecutor can make the particular
response atbat where t = max(1, p). The Advocate will respond as y = as for some s ≥ 1,
then Prosecutor can make the particular argument i = 2,

xy2z = at+sbat 6∈ aibjai,

winning the case for the Prosecutor.

Originally writen for University of Miami course CSC427 — Theory of Compu-
tation, February 2017.

4

