
TURING MACHINE VARIANTS

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Multi-tape Turing Machines 1
1.1. The simulator tape 2
1.2. Soft-state lookup 4
2. A Universal Machine 4
2.1. Example 5
3. Simulation of a DFA 6
4. Nondeterministic Turing Machines 7
4.1. The Turing Search Machine 8
4.2. Example 9
5. Appendix 11

1. Multi-tape Turing Machines

The theory of Turing Machines is supposed to be a Theory of Computation. If
each variant of a Turing Machine had different computing power, then the theory
lacks generality. However, a Turing Machine’s power is largely unaffected by the
details of its definition.

There are two variants of the Turing Machine that interest us especially in this
course: the multi-tape Turing Machine and the non-deterministic Turing Machine.
We will show them equal in power to the Turing Machine.

To show that a machine model M equivalent to a Turing Machine by proposing a
general method of transcribing M into a Turing Machine program that calculates
the same valuesM calculates every step fo the way. This is called a simulation. Our
Python Turing Machine simulation is a simulation (although one that shows that my

Date: March 26, 2020.
1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

Mac is as powerful as a Turing Machine, since my Mac can simulate in a generalized
way any Turing Machine computation).

1.1. The simulator tape. In class I have proposed on method of simulation. It
consisted of a tape format that interleaves the k tapes of the mutli-tape machine
into a single tape. And it consisted of a soft-state that drives the transitions in
the simulating machine so that it acts, transition by transition, as the multi-tape
machine would act.

To summarize the tape discussion, the tape is divided into three areas: the interleaved
area, the staging area, and the soft-state area.

1.1.1. The Interleaved Area. The the three areas are placed in sequence on the tape,
with the interleaved area coming last. It needs to be able to get unboundedly long.
The other areas are fixed sized and fixed format.

The interleaved area contains the contents of all k tapes in a cycle so that the zero-th
cell of each of the k tapes is placed on into the first 2k cells of the interleaved tape
(we will explain why 2k, not k, in a moment), the next cell of each of the k tapes in
the next 2k cells, and so on.

The interleaved tape will also record the k head positions of all k tapes. We use
2k cells for k symbols to leave every other cell for a marker that says whether the
head is over that particular symbol. A bit of wizard hackery suggests we do this by
leaving the cell either blank, or with the symbol from a set K of k elements that are
completely new and distinct symbols. This makes the code for finding a tape head
very compact.

δ11σ11δ21σ21δ31σ31 . . .

Where σij is the symbol in position j on tape number i; and δij is either a blank or
the i symbol the set K if the head position on tape i is j.

1.1.2. The Staging Area. It can be quite a mess writing a Turing Machine program.
One must release one’s inner Wizard for all the Hackery possible. My inner Wizard
recommended that I break down the simulation into three phases that repeat with
each simulation step: gather, soft-state look-up, execution.

The gather phase goes out into the interleaved area, finds the symbols under the
head of each of the k cells, and copies them into fixed locations in the staging area.

The execute phase will find k tape actions and k tape symbols in the staging area,

TURING MACHINE VARIANTS 3

and will copy the symbols into the interleaved area, and update the head markers
in the interleaved area, moving them back or forward by 2k steps, according to the
actions in the staging area

The staging area is the second area on the tape, just before the interleaved area, and
it has format,

a1σ1a2σ2 . . . akσk

Where ai is the action on the i tape retrieved from soft-state lookup, or is disregarded
in the gather phase, and σi is the current symbol on the i tape retrieved by the gather
phase, or to be written, in the execute phase.

1.1.3. The Soft-State Area. The soft-state area contains the state number, written in
binary, left-justified in a fixed width field. The width is set during the construction
of the simulator to be wide enough to contain the largest state number. It is the the
leftmost area on the tape and is bounded on both sides by a dedicated tape marker.
In my implementation the colon, that we have been using as the left-end of tape
marker.

: b1b2b3 . . . bn :

Where “:” is a dedicated symbol, and bi is either 0, 1 or a blank. It is a unique
string for each state in the multi-tape machine we are trying to simulate, and can
be thought of as if we numbered the states in that machine, and this is the state
number.

For convenience of the simulator, the string of all zeros is the unique accepting state;
the string of all ones is the unique rejecting state, and the start state is state number
1.

1.1.4. Summary.

: b1b2b3 . . . bn : a1σ1a2σ2 . . . akσkδ11σ11δ21σ21δ31σ31 . . .

Where,

• “:” is a dedicated symbol marking the left end of the tape, and the start and
end of the soft-state area,
• bi is either 0, 1 or a blank, and represents the current state of the simulated

machine,
• ai is the action on the i tape retrieved from soft-state lookup, or is disregarded

in the gather phase,
• σi is the current symbol on the i tape retrieved by the gather phase, or to be

written, in the execute phase,

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

• δij is either a blank or the i symbol the set K if the head position on tape i
is j,
• and σij is the symbol in position j on tape number i.

1.2. Soft-state lookup. The gather and execute phases are programmed in the
notebook (class CSC 427, Spring 2020). Here I discuss how the simulator captures
the computation of the simulated machine, and carries out all its actions in proxy.

The essential idea is that for every state transition in the simulated machine, we
create a state in the simulator. For each transition,

(q, σ1, σ2, . . . , σk) −→ (q′, σ′1, a1, σ
′
2, a2, . . . , σ

′
k, ak)

Create a state and give it a number.

The simulating machine navigates to a given state, which is a state-symbols com-
bination in the multi-tape machine, by scanning left to right the soft-state area,
branching one way or another on 0 or 1, and skipping over the training blanks until
the colon-marker, and then continuing its branching as it passes over each of the
current tape symbols in the staging area. This is always a fixed number of symbols,
k. At the end of this, the simulator is now in the required state.

From that state, issue a sequence of transitions that write q′ into the soft-state area,
overwriting q, and writes the σi and ai into the staging area. Then we are done with
the lookup.

In fact, what we will have in our Turing Machine simulator, is a capture of the state
transition information of the multi-tape machine to simulate, in a large tree. The
top part is a binary tree and is navigated downwards going left or right according
to the 0-1 pattern in the soft-state area (a 0-1 pattern is also known as a binary
number). The the bottom part will branch according to the family of tape symbols
in each of the k tapes.

This is a totally general structure. And the rest of the Turing Machine simulator is
a generic house-keeping of the tape, the gather and execute phases, and with each
round of simulation, dropping through this tree to map the input to the transition
to the output of the transition.

2. A Universal Machine

We introduce the notion of a Universal Turing Machine, and suggest that it is an
alternative to the above construction. From the universal T.M. falls out easily the

TURING MACHINE VARIANTS 5

simulation of a DFA on a T.M., giving the (perhaps unsurprising) result that T.M.
compute a superset of DFA’s.

— The idea of a universal machine is completely familiar. It is a common com-
puter. Our Turing Machines are hard wired up to do a task. Early computers, such
as the IMB 407 did this too, figure 4 figure 5 figure 6.

However, now programs are sent as text, and the text and data both reside in the
memory, on “the tape”. A Turing Machine can be created that is in this way pro-
grammable. We can do it with the idea of the multi-tape simulator described in the
previous section. What we do differently is rather creating a complex of states to
encode the transitions, we leave a textual description of the collection of transitions
on a separate, read-only, tape.

Given a transition,

(q, σ1, σ2, . . . , σk)→ (r, a1, τ1, a2, τ2, . . . , ak, τk)

encode this as a sequence of tape symbols,

〈q〉σ1σ2 . . . σk〈r〉a1τ1a2τ2 . . . akτk
where 〈q〉 is the binary representation of the numbering of state q, written zero
padded to a fixed length. This length is large enough to contain the largest state
number. That way the encoding of every state transition share a common length.

A separate tape contains these encodings, one after the other. An left end of tape
marker is useful, as each simulation step requires going left to left tape end, then
attempting to match the encoded transition against the soft state and staging area
of the simulation tape.

When a match is found, the second half of the transition encoding is copied to the soft
state and staging area. Hence our universal Turing Machine is a simple modification
of the multi-tape simulator, replace hard state to wire up the transitions with a list
of symbols, that are matched under program control.

2.1. Example. FIgure 2 gives an example of a Turing Machine program. This says
how a Turing Machine should be built. It gives the states the TM will have, how
transitions go between states, and the actions taken on transition.

We want to reformat that language for our universal machine. First we number
the states, as given in Table 3. Then we write out a long stream of symbols, the
concatenation of encodings for every state transition in the description, see Figure 1.

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

A-star-B-star:

a*^b^*

start: s

accept: a

reject: r

state: s

_ _ n a # accept the empty string

a a r a_seen

b b r b_seen

any number of a’s and end or some b’s

state: a_seen

a a r a_seen

_ _ n a

b b r b_seen

any number of b’s until end

state: b_seen

b b r b_seen

_ _ n a

a a n r

Figure 1. Turing machine program in our syntax

state number code
s 0 0000
a 1 0001
r 2 0010
a seen 3 0011
b seen 4 0100

Figure 2. Numbering the states

3. Simulation of a DFA

Simulation of a DFA by a Turing Machine is immediate from the previous section.

Use the above construction, however the state descriptor tape contains only a se-
quence of the simplified elements,

:: 〈q1〉σ1〈q′1〉 : 〈q2〉σ2〈q′2〉 : . . . : 〈qn〉σn〈q′n〉

TURING MACHINE VARIANTS 7

0000_0001_r

0000a0011ar

0000b0100br

0011a0011ar

0011_0001_n

0011b0100br

0100b0100br

0010_1000_n

0100a0010an

Figure 3. Program in tape format for universal machine

4. Nondeterministic Turing Machines

In both the Finite Automata and Push Down Automata, we gave thought to
nondetermism. This important concept in computing will continue to intrigue us,
for at least as we explore the P versus NP problem.

The prior results were that adding non-determinism to a finite automata is incon-
sequential to the language that results. The quick proof is that we can lift the
machine from a machine of states to a machine of sets of states, and lift with that
the transition function to work simultaneously on all states interior to a set of states.

In this was we follow the parallel threads of a nondeterministic finite automata,
simultaneously, in the trajectory of a sequence of single states. The parallelism is
bounded. If there are n states in the original machine, the maximum parallelism is
2n threads of computation, one for each state combination possible after each step
in the machine.

The situation of Push Down Automata’s was different. If one insists that it pro-
ceed deterministically, the class of languages recognizable is restricted. Compilers
need deterministic context free grammars, and these are not the general context free
grammar. But compiler writers will deal with any inconvenience by cheating.

For instance, C language is not even context free, because of the typedef class (see
section 5.10.3, Harbison and Steele, Fifth edition).

For Turing Machines, the class of languages recognizable (or decidable) is not changed
by adding non-determinism to the Turing Machine definition.

8 BURTON ROSENBERG UNIVERSITY OF MIAMI

4.1. The Turing Search Machine. We will prove this by the introduction of what
a call the Turing Search Machine. A non-deterministic TM program is easily re-
written for a Turing Search Machine. The machine will then weed through the
non-determinism, choice by choice, until it either finds a halting state (accept or
reject), or continues indefinitely.

Add to the Turing Machine simulator at,
https://github.com/burtr/Workbook/tree/master/fa-sim

the following modifications.

(1) There will be three tapes,
(a) The usual work tape,
(b) A read only input tape. The computation begins with the input written

onto this tape, and it is never modified.
(c) A search tape which enumerates one by one, breath first, all possible

non-deterministic choices to be made during a run.
(2) The tag vocabulary will be broadened to include a “choice” tag. A choice

tag has a name argument, as does the state tag; and the name can be used
interchangeably with a state name.

(3) The line following a choice tag gives three states or choices. Which of three
becomes the next state depends on the symbol under the head of the search
tape.

(4) The search tape is a binary sequence of finite length. Following the last 0 or 1
is an (effectively) infinite sequence of blanks. It is initialized at the beginning
of the computation with a single zero in the leftmost cell of the tape, and the
head above it.

(5) The search tape supports the following operations,
(a) It can be queried during a run using a “choice” transition. The choice

transition will look at the character under the head of the search tape,
and go to one of three states depending on whether the head is over a 0,
1 or blank. This action also advances the head one to the right.

(b) A count action. This will bring the head of the search tape back to
the left end and will increment the binary string on the tape to the
next binary sequence numerically. The count action will also have other
effects (described separately).

(6) The list of actions is expanded from L, R, N to include the new action: Z,
for “Zählen” (in honor of Turing naming his paper in German).

4.2. Example. Consider the recognition of (ab)∗(ac)∗. This would be done on a
NFA with two non-deterministic jumps — one after each ab whether to return to

TURING MACHINE VARIANTS 9

look for another ab or move on to look for ac; likewise whether another ac should be
matched or do we predict the end of the input.

On a search machine, here we go:

start :s

accept: a

reject: r

state: s

a a N c1

state: ab

a a R ab_1

state: ab_1

b b R c1

state: ac

a a R ac_1

state: ac_1

c c R c2

choice: c1

ab ac try_again

choice: c2

ac end try_again

state: end

_ _ N a

state_ try_again

_ _ Z s

a a Z s

b b Z s

10 BURTON ROSENBERG UNIVERSITY OF MIAMI

5. Appendix

Figure 4. From: http://www.columbia.edu/cu/computinghistory/407.html

Figure 5. From: http://www.columbia.edu/cu/computinghistory/407.html

TURING MACHINE VARIANTS 11

Figure 6. From: http://www.columbia.edu/cu/computinghistory/407.html

