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Modeling Full-Length Video Using
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_ Abstract—All traffic models for MPEG-like encoded variable  provide very high compression ratio while maintaining good
bit rate (VBR) video can be broad]y categorized into 1) data-rate quality of decompressed video. However, MPEG-coding pro-
models (DRMs) and 2) frame-size models (FSMs). Almost all \;iqes different amount of compression for different frames (see

proposed VBR traffic models are DRMs. DRMs generateonly : . . .
data arrival rate, and are good for estimating average packet-loss [3, Fig. 1 and Table 1] for examples) and results in variable bit

and ATM buffer overflowing probabilities, but fail to identify such  fate (VBR) data, known as VBR video.

details as percentage of frames affected. FSMs generate sizes of The MPEG standard permiistra (l), predicted(P), and
individual MPEG frames, and are good for studying frame loss bidirectional (B) encoding of frames. A group-of-pictures
rate in addition to data loss rate. Among three previously proposed (GOP) structure of N, M) cyclic format, composed ofV
FSMs: 1) one generates frame sizes for full-length movies without frames, starts from an | frame and ends before the next | frame;

preserving group-of-pictures (GOP) periodicity; 2) one generates .
VBR video traffic for news videos from scene content description every Mth frame is a P frame, andV — 1) frames between

provided to it; and 3) one generates frame sizes for full-length €very I-P, P—P, or P-I frames pair are B frames. For instance,
movies without preserving size-based video-segment transitions.if N = 6 and M = 3, a (6, 3) GOP structure with IBBPBB

In this paper, we propose two FSMs that generate frame sizes sequencing of frames results. Encoding of an | frame being
for full-length VBR videos preserving both GOP periodicity and  jndependent of other frames results in a low compression ratio

size-based video-segment transitions. . . - .
First, two-pass algorithms for analysis of full-length VBR videos but provides a point of access. Encoding of a P frame using

are presented. After two-pass analysis, these algorithms identify motion—compen;ated prediction .Of (most recent) pre\_/ious |
size-based classes of video shots into which the GOPs are parti-or P frame provides usually a higher compression ratio than
tioned. Frames in each class produce three data sets, one each fotthat of | frames. Encoding of a B frame using bidirectional
I-, B-, and P-type frames. Each of these data sets is modeled with prediction based on nearest pair of past and future I-P or P—P
an axis-shifted Gamma distribution. Markov renewal processes r P—I frames provides usually the highest compression ratio

> . s (0]
model (size-based) video segment transitions. We have used Q . .
plots to show visual similarity of model-generated VBR video datanompared with | and P frames. While the MPEG standard

sets with original data set. Leaky-bucket simulation study has per'mits use of many GOP structures for encoding a video,
been used to show similarity of data and frame loss rates between typically only one GOP structure is used for encoding all

model-generated VBR videos and original video. Our study of frames of a full-length videoThus, a cycle or period oV
frame-based VBR video revealed that even a low data-loss rate frgmes appears in an MPEG-coded VBR video.
could affect a large fraction of | frames, causing a significant

degradation of the quality of transmitted video. Accurate traffic models of VBR video are necessary for

prediction of performance of any proposed (and/or designed)
Index Terms—Frame-size traffic model, Gamma distribution,  B.|SDN during its operation. Several traffic models have been
ﬁgg—bmket simulation, MPEG, QQ plot, variable bitrate (VBR) - rqh05ed in the literature. They include first-order autoregres-
' sive (AR) [13], discrete AR (DAR) [6], [10], [16], Markov
renewal process (MRP) [2], MRP transform-expand-sample
I. INTRODUCTION (TES) [12], finite-state Markov chain (MC) [1], [6], [14], [16],

IDEO traffic is expected to be the major source for broao(_;amma-beta auto-regression (GBAR) [4], and GOP GBAR [3]
V band integrated services digital networks (B-ISDN) [11]r,nodels.

[1]. Because of large bandwidth requirement for communication 1, Categories of Traffic Models

of high-quality uncompressed video over B-ISDN, it is expected _ o

that most, if not all, video will be encoded with MPEG-like data 1 N€se traffic models can broadly be classified into two cat-

compression techniques [3]. These compression algorithms &gQries: 1) data-rate models (DRMs) and 2) frame-size models
(FSMs). In a data-rate model, only the rate at which data are ar-
riving at a link is generated for performance prediction purpose.
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In a frame-size model, sizes of individual MPEG framesally significant; our analysis of frames from a full-length video
are generated, and hence, data-rate information can be shwws much wider variations (see Table I). Also, the sizes of the
tained from the frame-size information. Moreover, during lofsames are drawn from log-normal distributions following [8]
performance modeling, location of lost data can be preciseihich are not quite good fits.The model in [2] requires that
identified for getting a better understanding of the quality dhe video to be modeled has been segmented into shots based
video at the receiving end. The inherent frame-by-frame buxsh texture and motion. Moreover, it uses an AR model which
nature of MPEG videos are preserved in these category hafs been reported to be unsatisfactory for full-length movies;
models. Models reported in [2], [3], and [9] fall under thidor instance, see [3].
category. Compared with the number of DRMs, only few FSMs
have been proposed. It is believed that the main obstacleGn Outline of This Paper
the development of an FSM is to find some standard statisticali, the next section, we present our full-length video analysis
distribution fitting different frame types. o algorithms. Following content-based MPEG video traffic mod-

Data rates of short-length videos with small variation betwe_@“ng reported in [2] and [15], our first objective is to partition
frames can be modeled by AR models. The GBAR model, beiggieq into clips. Itis assumed that most, if not all, video clips are
an autoregressive model with Gamma-distributed marginals aljdeast one GOP long. With this assumption, the first two steps
geometric autocorrelation, captures data-rate dynamics of VBR, ¢ analysis are as follows. 1) The sizes of all frames in a GOP
video conferences well. However, it is not suitable for generglq 5qded to obtain a sequence of GOP sizes for a movie, and ad-
MPEG video sources [3]. Data rates of videos of longer lengthig-ent GOPs of similar size are combined, by a moving average
with scene variations have been modeled with DAR, MRP, apghihod, to identify video clipsVe use only the size of GOPs and
MC. Allthese models were motivated to generate traffic load fojy; the content type to group GOPs in clipull-length movie
the study of cell-loss rate when multiple videos are multiplexgghnerates thousands of video clips. Next, these video clips are
over a broadband link in a B-ISDN. Empirical studies simUsrqyped into a smaller number (seven, in our case studies) of
lating leaky buckets have shown these models capture cell-legsses. We use geometrically separated class-size boundaries.
properties of ATM networks quite closely. However, they do Ngi| frames of each type (I, B, or P) belonging to a class are sep-
capture periodicity or cyclic property present within each GOyated to obtain a data set. This approach groups similar-sized
of a typical MPEG video. l, B, and P frames together (see Section II-C). Each frame type
B. Frame-Size VBR Models in a class is modeled with an axis-shifted Gamma distribution.

' For our case study, a total 8f x 7 = 21 Gamma distributions

During transmission one needs to consider the fact thge used.

MPEG videos contain very little redundancy. Moreover, 10ss For analysis of transition between classes, adjacent clips in a
of a part of an | frame affects all frames in its GOP, but losglass are merged together to form video segments. The lengths
of a whole B frame affects only that frame. Thus, even a#t video segments are modeled with Gamma and geometric dis-
apparently small rate data loss may affect perceptual qualifibutions. The inter-class transitions of video segments are an-
of received video significantly (or a large rate of loss of datglyzed to construct two state-transition probability matrices.
may affect it very little). For instance, a 10 bit-loss ratio In Section Ill, we propose two models, one for each
(BLR) may appear small enough to be acceptable, but consigiger-class transition matrix. For validation of these models,
an MPEG encoded video with 15 frames per GOP, and*10fy||-length syntheticmovies are generated using the proposed
BLR affecting only 1% frames of all video frames. Now, ifmodels. In Section IV, two standard measures—QQ plot and
all of those affected frames are | frames, it will affect 15% gkaky-bucket simulation—are used to show that the geomet-
the video, which is a perceptually significant degradation @fcally separated classification technique nicely captures the
video quality. Thus, for study of MPEG video transmission Behavior of I, B, and P frames of all classes into Gamma distri-
frame-level model is essential to get the necessary detailsptions. This is significant, especially for | and B frames which
the effect of loss during transmission. had hitherto remained less amenable to mimicking any regular

Relatively fewer models have been proposed for modeliRgatistical distribution. Both QQ plots and the leaky-bucket
of full-length movies that preserve distributions of I, P, and Bimulation results show that our models are closer to the real
frames. The GOP GBAR model attempts to capture overall stfovies as compared with other known models in the literature.
tistical properties of I, P, and B frames of MPEG movies. Ibnly the results for two full-length moviesGrocodile Dundee
does so by using three GBAR models for the generation of thr&ﬁd ET—are reported in this paper. We discuss our observa-

random variables that have Gamma-distributed marginals qn;hs, possib|e uses of proposed VBR video models, and future
geometric autocorrelations. The B frames are obtained from af\@ensions of our work in Section V.

of these random variables. The P frames are the sum of two

random variables and | frames are the sum of all three. How- Il. ANALYSIS OF VBR VIDEO

ever, this model does not attempt to capture shot-level regularity ] ] ] )

of sizes of I, P, and B frames, which is a typical characteristjc 1S section outlines our two-pass analysis algorithms
of the contents of any long video or any full-length movie [2]for extracting the parameters of a full-length VBR video.
The model in [9] assumes that the change of a scene chang@s? = F1, F2, I3, ... Iy, be the sequence of; frames
the average size of | frames, but not the sizes of P and B fram@gtained from MPEG encoding of a full-length video for

Reference [2, Table IV] shows that the average sizes of P and Byt myst be acknowledged that one distribution is yet to be found that fits all
frames can vary 20% and 30%, respectively, which are statistames of either | or B types of a movie well.
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modeling. Since estimation of DLR requires only the size of a clip-avg = (3¢, ec, s12€(Gr))/length(C;);
frame and not the actual data, a frame for the modeling purpose I*recomputeclip,,,, for C;*/

is represented by its serial number, type—I, B, or P—and } else{

size in bytes after the MPEG encoding. While not required by /*begin a new clip withG;*/

the MPEG standard, the underlying GOP usually follows an i=Ji+1

(N, M) cyclic format in which the first frame of a GOP is an | C; = {Gi};

frame, everyMth frame is a P frame, and the rest are B frames. /*the new clipC; starts withG;*/
For this study, it is assumed that a movie has been encoded clip_avg = size(G;);

with one GOP structure. The size of a GOP is the sum of the [*initialize clip_avg for C;*/
sizes of allNV frames in the GOP. We denote successive GOPs

by G1, G, ..., Gy, for our reference in this paper. Without } /*for */

any loss of generality, we assume = N * ng, as the last few end;
frames of an incomplete GOP which may remain at the end of a

full-length movie with 175000-200 000 frames can be ignored e pex step in our VBR video data analysis, outlined below,
for the purpose of modeling without any noticeable impact qg partitioning of the clips intshot classes
the model.

B. Formation of Shot Classes From Clips

A shot clasof lengthk, k > 1, is a union ofk distinct, but

A clip of lengthk is any consecutive sequencefofSOPs, not necessarily consecutive, clips. We represent shot classes by
kE > 1,thatis,Giy1, Giyo, ..., Gigy, for somei, 0 < & < S1, Sy, ... andC; € S; denotes all GOPs belonging to clify
(ny — k + 1). We denote successive clips 6y, C», ... and a belong to shot clasS;. Every clip belongs to one and only one
set of clips byC'. We use the notatiot¥; € C; to indicateG; shot class.
belongs toC;, andlength(C';) to indicate the number of GOPs  We construct the shot classes by partitioning the entire range
in C;. of GOP sizes into the desired numhagn = 7 for the studies re-

We group similar-size GOPs to obtain a set of video clipported) subintervals, one for each shot class. We experimented
During clip construction, let the average size of a GOP iwith several partitioning methods and found that a geometric
the partially formed clip of length: starting with G;,; be partitioning (explained below) results in a statistically signifi-
clip_avg = (Zle size(Giy1))/k. The next GOPG, 41, Cant number of GOPs in each partition such that each partition
is included in the current partial clip if the size 6f;,;,; IS amenable to a statistical modeling.
does not differ fromelip_avg by more than a user-provided We have observed that the presence of a tewsmalland
thresholdvalue. The smaller the value tifreshold the smaller too largeGOPs introduces undesirable biases in any model un-
the length of each clip and, consequently, the higher the tot{gss those extreme sizes are treated more like exceptions. In our
number of clips formed. The choice of a value foresholdfor ~ @lgorithm, the smallest and the largest 1-percentile GOPs are
the modeling is not very critical and we have observed that alfjtially set aside as being too extreme. The GOP sizes cor-
value close to the average size of a B frame can be used wig§Ponding to these 1 and 99 percentile points are referred to
good results. For the results reported in this paper, the vafié variablesa andb, respectively, in the pseudocode below.
of thresholdwas 4500 forCrocodile Dundegwhose average The remaining interval of GOP sizes, namély, b], is parti-
B-frame size is 4445.82 bytes, and 2000 EF with average tioned inton subintervals. The successive partitioning bound-

B-frame size 2003.14 bytes. The pseudocode below explaﬁ{.ées of these intervals increase in a geometric progression with
the method of clip formation. a as the first term and = ar™ as the(n + 1)th term. This

A. Formation of Clips

results inn subintervalsia, ar], [ar, ar?], ..., [ar" "1, ar"]
wherer = ((Inb—Ina)/n) is the common ratio of the progres-
Algorithm Clips_From_GOPs sion. The first subinterval is now extended to the left to include
Input the range of 1%small GOP sizes initially set aside. Similarly,
G: {G1, G4, ...}, the set ofGOP, the last subinterval is extended to the right. A clip is now made
threshold user provided value to belong to a shot class if the average size of a GOP in this clip
Output falls in the interval for that shot class. It may be noted that a
C: {Cy, Oy, ...}, the set of clips; partitioning with subintervals of equal length produced rather
begin unsatisfactory results. Moreover, very few GOPs would then
4 = 1; [*index of the current clify belong to shot classes which correspond to large average GOP
Oy = {Gy}; sizes, making any statistical observation less meaningful.
[*C4, the current clip starts witly, */ The algorithm Get_Shot_Classes shows how shot classes are
clip_avg = size(G1); formed.
[*average size of GOP in current clip
for (i = 2; i < mng; i+ +){ Algorithm Get_Shot_Classes
if abgclip-avg — size(G;)) < threshold { Input
[*continue expanding the current clip G: {Gy, Go, ...}, the set of GOPRs
C; = C; U{G;}; C: {Cy, Cy, ...}, the set of clips

[*expandC; by insertingG; into it*/ n: number of shot classes
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Output TABLE |
. I-, B-, AND P-FRAME CHARACTERISTICS INALL SHOT CLASSES(CD)
S: {851, Sa, ..., S, }, the set ofw shot classes
begin . ) ) shot | frame Parameters
a = 1 percentile value of size(G;), 1 < i < mngy}; class | type |[offsetiu) | @ | o | #irame
[*GOPs smaller than are too smatl/ I 10824 | 19794.18 | 211130 | 2014
b = 99 percentile value of size(G;), 1 <i < ny}; 1 g 13033 2595859-1714 ;782-2; gg?g
[*GOPs bigger thah are too big/ - i 18157 [ 358301 | 193377 | 2586
computer such thatar™ = b;/*r = e((lnt=Ilna)/n); 2 B 72 | 110736 | 79584 | 10344
common ratio of shot class boundaridés. P 2813 ?;?-10 10(5)§§9 2582
¥ S i , . 1 19717 | 26562.41 | 2205.68 02
intervaly = [ming, 1 <i<n, {size(Gi)}, ar]; 3 | B 203 | 215711 | 115120 | 20104
[*subinterval for the first shot class P 4704 721188 | 111618 | 5026
for(i =24 <mn;i++) T 22355 | 2895457 | 211628 | 9045
/*subintervals for intermediate shot clasges 4 B 500 | 3753.84 | 1566.81 | 36180
P L= lari-l aril: P 6662 | 939943 | 132958 | 9045
_intervaly = [ar” 7, ar’]; , T || 25005 | 31574.16 | 276338 | 5940
interval, = [ar™ ™, max; 1<i<n, {size(Gi)}]; 5 B 868 5905.07 | 2050.99 | 23760
[*subinterval for the last shot clags 11’ 28;/26292 ;gig?igz ;;313; ;g;g
for(j =1; j < |Cf; j + +) . 6 | B 1563 | 872097 | 261028 | 1159
[*for each clip compute its average GOP &ize P 11675 | 15921.50 | 216674 | 2899
clip_avglj] = (X g, cc. size(Gr))/length(Cy); I 29891 | 40294.68 | 435322 | 1579
for (j = 1; j < |C]; H T J+) { 7 B 4128 | 13427.61 | 4148.17 | 6316
J= 5= 1Mk P 15274 | 21236.11 | 395819 | 1579
[*for each clig/
find k, 1 < k < n, such thatelip_avg|j] € intervaly; T T T T TN —
I*shot class for clip?;*/ 1+ e e g:ggzw
insertC; into Si; VAR & e
/*all GOPs ofC; would belong taSj*/ sl S
} , ;
end; : /
os} g -
Thel, B, and P frames in the GOPs of each shotcfass < 9
1 < n, are now separated to obtain three sets of frathgsS; g, 3 4t ]
andsS; p denoting the I, B, and P frames$h, respectively. Thus,
the shot-class-finding algorithm partitions the clips intghot 0zl }
classes, eventually separating the frames dataata sets. As
discussed next, the strength of this partitioning stems from t ’y
fact that these data sets can be modeled quite accurately. % o000 po 20000 20000 po— 50000
Frame size
C. Statistical Characterization of I, P, and B Frames Fig. 1. Separation of | frames (CD).
In this section, we present the observations and analysis
of data sets obtained from our shot classification algorithr ' ' ' ' ' s1P—
Table | shows that geometrical separation of class boundar r e s
kept enough data points in each class (the smallest has 15 [./ // yad _‘252
for doing meaningful statistical analysis and modeling. Befor, | [ Y Y A | e & ]
we discuss the statistical models, we present distributions ofg [ / I H
P, and B frames of all seven classes. < i [ ' ;
Seven plots in Fig. 1 are for the | frames of the movis °¢f { li / ; 1
Crocodile Dunde€CD). These plots show three facts. 3 [, / / /
1) The ordering created by our size-based classification 0l | / 4
GOPs is preserved in the distribution of sizes of | frame: b / /
i o . . : . / /
In other words, cumulative distribution &, is quite OJ / i
regular and is to the left of that &f;., )7, forall &, 1 < | i / [ :
k < 6. j‘l i // / "‘ ,"‘
2) Frequency distributions of two sets of | frames comin 0 LA A A S . 1 .
L] 5000 10000 15000 20000 25000 30000 35000
Frame size

from two adjacent classes of GOPs have some overlap
3) Frequency distributions of two sets of | frames comin’g_ _
from two nonadjacent classes of GOPs have very littfdd - Separation of P frames (CD).

(less than 10%) or no overlap.
These three characteristics of I-frame data sets are also presboiv mean sizes of I, P, and B frames of all seven classes of

in P- and B-frame data sets (see Figs. 2 and 3). Plots in FigCD. We can see that for all frame types, the mean sizes increase
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- S7B —-— ¢ H s71 -
S i P i }
1 .-": r :-‘"
w 5" [ i
E B E 06 :,; g
] 04 ]
4 0.2 -
15:00 zm.m 25.)00 30000 40(‘100 50(;00 60000
Frame size Frame size
Fig. 3. Separation of B frames (CD). Fig. 5.
sl T T T T e =
Pframes = P Pty §:°r T
40000 |- + ~ S75P ——
d S 6P -
o S7P -~
35000 | + 4 . 08 £ J
* 1
30000 |- . i
e + r ;
E 25000 | * | 06 |
. '
20000 + * O
g 04 4
15000 |- x J
x X
10000 | * 4 02 |
. x ’
5000 N x 4
* x x
0 x X A . . . . 1 . .
1 2 3 4 5 6 7 20000 25000 30000 35000
Shot class Frame size
Fig. 4. Mean size of I, B, and P frames in shot classes (CD). Fig. 6. Separation of P frames (ET).
monotonically with shot-class index. Thus, geometrically sepi i3
rated GOP-size boundaries classified |, P, and B frames well. (s = P S48
very useful observation is thatin a class of small-size GOPs, |, i y $eC
and B frames are also small. It must be noted that such aregtz ey | / /’ 7 7 i
statistical behavior may not hold for a GOP-by-GOP compag T /
ison. Figs. 5—7 show similar separation of I, P, and B frames g L | / J
the movie ET. The monotonical growth of the mean sizes wit; i ‘,:' !
shot-class index are depicted in Fig. 8. g P
The next task is to model distributions of |, P, and B frames iz °4}:/ | 1
each class. In other words, we need to find some standard ¢ :
tistical distributions to fit§ x 7 =) 21 empirical distributions. oz |
The observed patterns and quite successful frame-size moc
in [3] motivated us to model each frame-size distribution with .
Gamma density function ‘ 15000 20000 25000 30000
Frame size
1 a—1,—z/08 1 . .
e . (1) Fig. 7. Separation of B frames (ET).

Gamméuz; «, ) = mx

Let T be the estimated mean astbe the estimated varianceis smaller than that of the data set. A close look and some ed-
of a data set. If the data set has been drawn from a Gammaated guessing led us to shift each point of the data set by a
distributed population, its parametersand/3 can be estimated constant number of bits. (We discuss later how we chose the
asf = s?/z anda = E/B. value of shiftu.) Estimates for twvo Gamma parameters, after

Fig. 9 shows that this conventional estimation of parametesBifting each point by. units, are given by} = s2/(x — u) and
shifts the distribution function to the left and height of the peak = (z — u)/8. The selection of. is complicated by the fact
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45000  rames N TABLE I
Pirames x PROBABILITY TRANSITION MATRIX P4 FORMODEL A (CD)
40000
* state state
35000 |- 1 1 2 | 3 1 4 51 6 7
30000 | . : ] 1 _[[095]003]001]001] O 0] 0
] 2 0.02 | 0.89 | 0.08 | 0.01 0 0 0
2 25000 * 3 0.01 | 003 | 0.79 | 0.15 | 0.02 0 0
£ + 4 0 0.01 | 0.08 | 0.77 | 0.13 | 0.01 0
g 20000 . 5 0 0 | 001 | 021 | 065 | 0.12 | 0.01
* 6 0 0 0 0.02 | 0.24 | 061 | 0.13
oo * . 7 0 0 0 0 | 002025073
10000 * J
x x TABLE I
5000 - * " 1 PROBABILITY TRANSITION MATRIX Py FORMODEL B (CD)
0 ¥ : X X N N L
1 2 3 4 5 6 7 state state
Shot class 1 1T 21T 3 1 4715 6 | 7

0 0.65 | 0.20 | 0.10 | 0.02 | 0.01 | 0.02
0.23 0 0.60 | 0.13 | 0.03 | 0.01 0
0.03 | 0.15 0 0.71 | 0.09 | 0.02 0
0.02 | 0.37 0 0.59 | 0.02 0

0 0.03 | 0.61 0 0.34 | 0.02

0 0.01 | 0.06 | 0.60 0 0.33

0 0 0.02 | 0.05 | 0.93 0

Ei

g. 8. Mean size of |, B, and P frames in shot classes (ET).

0.0003 T T T T T T T
Original frames ——
Gamma fit with shift ——
Gamma fit without shift --------

N\ | BN =
[=] =] [=] =]

0.00025

] the video segments and recorded their lengths. The segments

were constructed because the length of a segment captures the
burst length of similar-size GOPs in a video more accurately
than does the length of a clip. Following [2], a Gamma distri-
bution with parameteray, and 3y, estimated from observed
lengths of segments in class, is used later in this paper for
estimating the lengths of video segments in one of our models.
In the next section, we present two methods for estimation of
inter-class transitions of video shots.

0.0002 |-

0.00015

Probabillity Density

0.0001

E. Inter-Shot Class Transitions

. - Let P be a|S| x |S]| transition probability matrix where

edo 8000 10000 ‘z’""ﬁm‘e“::: 160m 18000 20000 2000, . gives the probability of transition frons; to S;. The
matrix P has the stochastic property thEIji'lpij = .1 for

Fig. 9. Gamma fit for P frames in shot class 5 (CD). i = 1,2,...,|5]. We compute the transition matri® by

two different methods and call the resulting matridés and

that in most data sets there are a few points that are too far to {ie respectively. The matrix’s supports self-transitions but
left or right. These data points should be excluded during andls excludes self-transitions. That is, the principal diagonal
ysis and modeling. There are many sophisticated technique§t@ments inPp are zeros. The implications of these two
identify these points. However, we resort to a simple heuristié!fferer?t kinds of transition probability matrices are discussed
Ignore 1% of the data points and set the value of the shift N Section [lI. _ -

one percentile value. Table | shows shift values, mean, and stan! he algorithms for computing’s and P’p are quite similar.

dard deviation for all data sets of CD. These distributions aféey both compute the transition probabilities from normalized
used for generation of synthetic VBR videos. Results reportedfative frequency of transitions among shot classes as one se-

Section IV demonstrate that they nicely capture statistical profientially traverses all GORs,, G, ..., G, in the original
erties of the data that they model. video. ForP,, we setp;; = (fi;/fi), where f;; is the total
The analysis technique used for modeling the duration Bgimber of transitions frons; to S;, and f; is the total number
video segments is described next. of transitions out ofS;. The transition matrix’s is computed
in a similar manner except that all self-transitions are ignored.
D. Formation of Video Segments The matricesP4 and Pg for Crocodile Dundeeare shown in
Tables Il and Ill; those foET are quite similar and have not

A video segmenin a shot class is maximal consecutivee-
quence of clips belonging to that shot class. It is maximal in t
sense that no proper subset of a segment qualifies as a segment,
and hence, itis also a maximal consecutive sequence of GOPs in
the shot class. Thiengthof a segment is the number of GOPs Two models, called models A and B, for generation of video
it contains. We examined the clips in each shot class to fofname-size sequences are described next. Both the models use

rl%)eeen shown.

I1l. M ODELING OF FULL-LENGTH VIDEO
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Markov renewal processes. Model A uses only the ma#ix s = nextstate(s, Pa);

for inter- and intra-state transitions. Model B uses Gamma-dis- [*change current state usirdgy, */

tributed random variables for lengths of video segments/and  }

for inter-state transitions. In both models, we used a functiemd;

nextstate(s, P) to find the next state for a transition from

the currer_lt state using the pro_bability transition matrix_ P'B. Generation of Synthetic Video: Model B

The functionnexztstate(s, P) is implemented by generating

a random number in the real interval [0, 1] and then finding N t_h_is model_, inter-state transitions are controlled by th_e state

the smallest integef as the next state such tha 7_, p,;. transition matrixPg. The number of GOPs generated while in

In both models, each shot class corresponds to a state of ##ate is modeled by a Gamma distribution of segment length

underlying Markov chain. for this state. The parameters for these distributions for all states
were estimated from the segment lengths of the original video

A. Generation of Synthetic Video: Model A (see Section II-C). After the frames corresponding to a segment
in a shot class are generated, the transition mdtgxis used

In t.h,'s mode!, the next state is Qetermmed by using the S3{fdetermine the next shot class or state. Since the diagonal el-
transition matrixP’4 after generating all frames of a GOP ing ants ofPy are zeros (see Table IIl), unlike Model A, the
the current state a_nd the process _is repeate_d until the desiregh; srate would always be different from the current state in
number of frames is generated. Since the dlagonal-elementﬂ.ﬁg model. The process is repeated until the desired number
P, are nonzero (see Table Hpatstate(s, Pa) mightfindany of \igeo frames is generated. Procedure Generate_Video_Seg-
state including as the next state. It may be noted this state traﬂient, detailed below, generates the frames corresponding to a
sition scheme generates video segments whose lengths waligment of a given state. This is followed by algorithm Gen-

be geometrically distributed. The size of an I, B-, or P-type Qfate Full_video_UsingPs which uses this procedure in any

frame in a state is estimated in two stages: first, the parametgrge and then makes a transition to the next state in order to
of the shifted Gamma distribution for that frame type and Staﬁ%nerate frame sizes for the whole video.

(a_ls 9btajned in Section.II—C) are used to draw a valut_e from th|sl) Generation of Individual Segment®rocedure Gen-
distribution, and then this value is added to the offstt incor-
porate the axis translation (see Section II-C).

The MPEG traces used in this paper have (6,3) cyclic MP
format, soN is 6 in the algorithm that follows.

erate_Video_Segment determines the number of GOPs to be
enerated at the current state by using the Gamma parameters
segment length distribution for this state. As in model A, the
individual I, B, and P frames are generated by their respective
Gamma models.

Algorithm Generate_Full_Video_Using’4

Input Procedure Generate_Video_Segment(s,Q)
n¢: number of frames to be generated Input:
Ry Bar, Usr; 1 < s < |S|, R € {I, B, P}: Gamma s: the current statp
parameters and offset for I, B, and P iR, Bsr, usr; R € {I, B, P}: Gamma parameters
frame types in each class and offset for I, B, and P frame types in state
P4 probability transition matrix a1, fr.: Gamma parameters of segment length

Output for states;
F’: a sequence af; frame sizes Output:
begin Q: sequence of frame sizes for a segment
s = initial random statel < s < |S|; generated in state;
count = 0;/*number of frames generatgd begin
F' = ¢; Q= ¢

while (count < ny) { /*generat@ne GOP in states,
the current state/
for(k=1k<N; k++){

drawny ~ Gamma(az,, Br.);
[*estimated segment length for current state
for(j =17 <nr;j++){

/* generat@V frames in each GOP
case (type okth frame in GOP)
l:draw f ~ Gamma(casr, Bsr);
[*draw f from Gamma distributiotf
f = f + Usr;
[*add offset to estimate frame size
B:draw f ~ Gamma(asp, BsB);

f = f + UsB; N
Pdraw f ~ Gamma(azp, Bsp);
f = f + usP;

insert < countframe— type f > into F”;
count= count+ 1;

}

[*generate.;, GOPs in state*s
for(k=1k<N;k++){
[* generateV frames in each GO®
case (type okth frame in GOP)
l:draw f ~ Gamma(asr, Bsr);

[*draw f from the Gamma distributicr

f = f + UsT;
/*addoffsetto estimate franle Sizé
B:draw f ~ Gamma(asg, BsB);

f = f + usB; R
Pdraw f ~ Gamma(asp, Bsp);
f = f + usp;

insert< count, frame- type f >
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into Q; 80000 T T ' T '
count = count + 1, +
/*global countef/ 50000 I
}
}
end; 40000

2) Generation of Full Video:The full video in this model
is generated by starting from an initial random state and th
making the state transitions usidgs. In any states, the se-
quence of frameg) corresponding to a segment énis gen-
erated by calling procedure Generate_Video_Segrpier®).
The process is repeated until the desired number of frame:
generated.

MM(

20000

QGenerated Movie Frame Size

10000 |-

H H 0 1 1 1 1 L
Algorithm Generate_Full_Video_Using’g . prow prwn poon prowm prm o000

lnpUt: Original Movie Frame Size
ns:number of frames to be generated
Pg:transition probability matrix Fig. 10. QQ plot for the whole movie generated using Model A (CD).
Output:
F”: a sequence oi; frame sizes
begin
s = initial random state1 < s < |S]; 50000 |-
count = 0;/*number of frames generated
FI/ — ¢’
while (count < ny) {
call Generate_Video_Segment(s,Q)
[*generat&), a segment of frames for stat®/
insert all frames ofy into £
count = count + |Q|;
s = nextstate(s, Pg);
/*change current state usirgs */

60000 T T T T

—+ 4

QGenerated Movie Frame Size
8

end; 10000 | J
[V. MODEL VALIDATION 0 . . . . :
. . . . 0 10000 20000 30000 40000 50000 000
We have presented multilevel characterization techniques Original Movie Frame Size ®

full-length VBR video data sets. Also, two models for genera-

tion of synthetic full-length VBR videos have been proposed. Tg. 11.  QQ plot for the whole movie generated using Model B (CD).
validate these models, model-generated VBR videos have been

compared with original VBR videos. Following standard tectbe seen, the frame sizes of the two videos are almost identical;
niques in the literature, we show quartile-quartile (QQ) plots anle only exceptions are a few large-size frames in the synthetic

data loss observed from simulation of leaky bucket. movie. These exceptions may practically be ignored, since the
number of such frames is only a small fraction of a percent.
A. QQ Plots The Model-B generated video produced a similar QQ plot (see

The QQ plot of two data sets is a visual inspection methddd- 11). Although Model A overestimated the frame sizes and
for verification of their similarity. In this method, for a givenModel B underestimated them, these deviations were very small
percentile rank (say, 10%), a pair of values of data (sa§nd, practically, the frame-length distributions of synthetic and
(1293,1243) from two data sets are obtained. Usually, sever8liginal videos are indistinguishable for both models. The simi-
pairs of values are collected for desired range of percentifity of the synthetic and original data sets of the movie ET are
values and are plotted. If two data sets are identical, a straightStrated in Figs. 12 and 13 for Models A and B, respectively.
line, described by = =z, is obtained. Thus, the closer the plot
to the liney = «, the better the similarity between the data setS: Buffer Overflow Loss

First, the traces of the movie CD are discussed. The plot inA QQ plot depictsglobal similarity of two data sets. How-
Fig. 10 depicts the similarity of the original VBR video dataver, if the elements of these two data sets are ordered by frame
set with that synthetically generated using our Model A (whicimdex, as in the case of actual video frames, a QQ plot does not
assumes geometrically distributed video shot lengths). As caveal any information about local distributions of the frames.



646 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

60000 T T T T T TABLE IV
PERCENTAGE OFBIT LOSS INORIGINAL AND GENERATED MOVIES (CD)
50000 - Y ] buffer movie drain rate factor (d)
capacity(c) type 2.000 | 3.000 | 4.000 | 5.000
original 18.303 | 4.116 | 0.358 | 0.011

0 ms Model A || 18.144 | 4.064 | 0.365 | 0.014
Model B |{ 17.059 | 3.302 | 0.267 | 0.007
original 14.222 | 2.360 | 0.183 | 0.002
10 ms Model A || 14.022 | 2.325 | 0.179 | 0.005
Model B || 12.918 | 1.861 | 0.125 | 0.002
original 10.480 | 1.326 | 0.079 | 0.000
20 ms Model A || 10.211 | 1.301 | 0.082 | 0.001
Model B 9.083 | 1.024 | 0.054 | 0.000
original 7.126 | 0.721 | 0.033 | 0.000
30 ms Model A 6.836 | 0.707 | 0.036 | 0.000
Model B 5.769 | 0.539 | 0.022 | 0.000
10000 |- 1 original 4.404 | 0375 | 0.011 | 0.000
40 ms Model A 4.172 | 0.365 | 0.014 | 0.000
Model B 3.383 | 0.267 | 0.007 | 0.000

Generated Movie Frame Size
2
T
.

0 1 1 1 L i

0 10000 20000 30000 40000 50000 60000
PERCENTAGE OFFRAMES AFFECTED INORIGINAL MoVIE (CD)

Fig. 12. QQ plot for the whole movie generated using Model A (ET).

buffer frame drain rate factor (d)
60000 T T T T T capacity(c) | type 2.000 [ 3.000 ] 4.000 | 5.000
All 17.383 | 9.168 | 0.921 | 0.054
. 0 ms I 97.737 | 54.433 | 5.528 | 0.323
50000 ] B 0483 | 0.037 | 0.000 { 0.000
P 4.627 0.430 0.000 | 0.000
All 16.130 5.407 0.524 | 0.018
g 10 ms 1 92.770 | 32.053 | 3.146 | 0.107
w 40000 F 1 B 0.442 0.034 0.000 | 0.000
E P 2.241 0.251 0.000 | 0.000
I All 14.757 3.040 0.310 | 0.000
f ol ] 20 ms I || 85.637 | 18.031 | 1.860 | 0.000
s B 0.425 0.031 0.000 { 0.000
3 P 1.210 0.083 0.000 | 0.000
5 All 12.888 1.949 0.120 | 0.000
g 20000 - 7 30 ms 1 74.818 | 11.503 | 0.722 | 0.000
B 0.410 0.030 0.000 | 0.000
P 0.870 0.069 0.000 | 0.000
10000 F J All 9.478 0.952 0.054 | 0.000
40 ms 1 54.433 5.528 0.323 | 0.000
B 0.402 0.029 0.000 | 0.000
. ) . ) ) P 0.828 0.065 0.000 | 0.000

° 0 10000 20000 30000 40000 50000 60000

Original Movie Frame Size
Tables IV=VII show data loss rates for various buffer capac-

Fig. 13. QQ plot for the whole movie generated using Model B (ET). ities and drain rates for original and synthetic traces of CD.

Each cell of Table IV shows percentage data loss for original
For instance, one dataset may have all the large data valuesatd full-length synthetic movies from the two models. For in-
gether and another dataset may have these large and small st@lace, wher = 20 ms andd = 3, the original movie suffers
values nicely interleaved, and yet both may show identical QL3326% data loss. With an identical buffer and transmission set-
plots. For communication of VBR videos over B-ISDN, temting, full-length movies generated by Model A and Model B
poral ordering of the frames plays a critical role in DLR; fosuffer 1.301% and 1.024% data loss, respectively. Although the
a given data transmission rate, the occurrence of long runsdifferences are very small, one can see that 1) Model A shows a
large-size frames (known as burstiness) has higher DLR than ttigher data loss than the original movie, and 2) Model B shows
absence of them. Hence, temporal burstiness of original VERower data loss than the original movie. This observation also
video must be preserved in the data generated by a good moHtelds for other communication settings.
The most commonly used test for measuring this behavior isDuring our simulation study, percentage of total frames lost
passing the data through a generic buffer with capaciywd and percentage of each type of frames lost were recorded. Some
drain rate factorl. For our study, buffer capacity is expressedf the results are reported in Tables V-VII. The additional in-
in terms of mean frame size of the VBR source and is indepesight obtained from the frame-specific data-loss pattern is quite
dent ofd. For a 25-frames/s source = 20 ms corresponds to revealing. For the original movie, when= 20 ms andd = 3,
one half of a mean frame size of the VBR video. The drain ratamly 3.04% of all frames are affected; a closer look reveals that
factord is the ratio of the number of bytes actually drained penost of them are | frames—as many as 18.031% | frames have
second to the average data rate of the VBR video. been affected. The impact of an affected | frame propagates
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TABLE VI 0~ ™ T Alames (og. movie) ——
PERCENTAGE OFFRAMES AFFECTED IN MOVIE GENERATED WITH "*~.‘ All frames A)
MODEL A (CD) AN iy Ay e
\ B frames (org. movie) --—-
buffer frame drain rate factor (d) 80 3 pm A é
. 5 (or?ﬁ.mme
capacity(c) type 2.000 T 3.000 | 4.000 | 5.000 3 P trames (Model A
All || 17.355 | 8.758 | 1.002 | 0.052 8 ;
0 ms 1 97.156 | 52270 | 6.009 | 0.323 -
B 0.558 | 0.000 | 0.000 | 0.000 3 %
P 4.744 0.275 0.000 | 0.000 é
All 16.181 5.281 0.518 | 0.025 .;
10 ms 1 93.017 | 31.558 | 3.108 | 0.148 g .
B 0.382 0.000 0.000 | 0.000 g 4f L
P 2.540 0.131 | 0.000 { 0.000 3 i
All 14.650 | 3.086 | 0.270 | 0.009 3 y
20 ms 1 85.626 | 18.460 | 1.619 | 0.055 3
B 0.290 0.000 0.000 | 0.000 J
P 1.351 0.055 0.000 | 0.000
All 12570 | 1.778 | 0.125 | 0.001
30 ms 1 73.698 | 10.660 | 0.753 | 0.003
B 0.227 0.000 0.000 { 0.000 L
P 0.815 0.007 0.000 | 0.000 5 6
All 8.933 1.002 0.054 | 0.000 d : drain rate factor
40 ms 1 52274 1 6.009 { 0.323 { 0.000
B 0.199 0.000 | 0.000 { 0.000 Fig. 14. Affected frames versus drain rate in Model A. Buffer capacp ms
P 0.529 0.000 | 0.000 | 0.000 (CD).
TABLE VIl
PERCENTAGE OFFRAMES AFFECTED IN MOVIE GENERATED WITH
MoDEL B (CD)
buffer frame drain rate factor (d)
capacity(c) | type 2.000 3.000 | 4.000 | 5.000
All 17.326 | 7.489 | 0.774 | 0.037 a
0 ms 1 97.270 | 44.673 | 4.644 | 0223 §
B 0.517 0.000 | 0.000 | 0.000 k]
P 4.617 0.261 0.000 | 0.000 k]
All 16.241 4.322 0.407 | 0.013 s'-?)
10 ms 1 93.705 | 25.838 | 2.441 | 0.079 [
B 0.331 0.000 0.000 | 0.000 g
P 2417 | 0.096 | 0.000 | 0.000 ¢
All 14.702 2.516 0.187 | 0.001
20 ms I 86.008 | 15.071 | 1.124 | 0.007
B 0.241 0.000 0.000 | 0.000
P 1.241 0.024 0.000 | 0.000
All 11.879 1.458 0.084 | 0.000
30 ms 1 69.827 8.749 0.502 | 0.000
B 0.186 0.000 0.000 | 0.000
P 0.705 0.000 | 0.000 | 0.000
All 7.636 0.774 0.037 | 0.000
40 ms 113 431677: g% gﬁ 8% Fig. 15. Data loss versus drain rate. Buffer capaeit@0 ms (ET).
P 0.447 0.000 0.000 | 0.000

of | frames were affected, but hardly any P or B frames were af-
across the whole GOP containing the | frame. Thus, one c%?r?ted' C(_)ns_equen_t to which Fhe plots fpr P and B fram_es prac-
aﬂgally coincided with the horizontal axis. From these figures,

; o .
conclude that as high as 18.031% of the movie would be we can see that model-generated traces very closely follow the

fected. To reduce the percentage of affected | frames, it is nec . : :
. - . . data-loss trends of the original movie. Although differences are
essary to increase the buffer size (creating the effect of video

) ) . : ; . \ery insignificant, Model-A generated traces show higher and
smoothing) or the drain rate (increasing bandwidth allocatio
- odel-B generated traces show lower data (and frame) loss
or both. The plots in Fig. 14 show that the data loss affects o :
) . ates than that of the original movie.
| frames several times more than it affects P or B frames. The
least affected frames are B frames.

Simulation studies with traces of the movie ET show sim-
ilar results. To conserve space, we do not show them here as td=rame-size-based models of VBR videos, especially
bles. Instead, we illustrate some of these observations as plotiilitlength movies, are essential for understanding the effect of
Figs. 15-20. It may be noted that for a reasonably high drain ratata loss during transmission of MPEG-like compressed VBR
factor hardly any P or B frames are affected but still the loss of/ldeos over B-ISDN. However, no satisfactory frame-size-based
frames could be significant. For example, Figs. 19 and 20 shamodel has been reported in the past. The limited success of

that for a drain rate factor of 4.5, a large percentage (5%—20%@st efforts in frame-by-frame modeling of full-length VBR

V. DIScusSION ANDCONCLUSIONS
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Fig. 17. Affected frames versus drain rate in Model A. Buffer capagity

20 ms (ET). Fig. 19. Affected frames versus buffer capacity in Model A. Drain raté.5
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video is not due to lack of effort, but because of the complex
nature of frame-size data sets. Three different compressi@a an axis-shifted Gamma distribution, whose parameters are
techniques applied to I, P, and B frames produce differe@stimated form the data set it models.
amounts of compression. Moreover, different segments of aUsing these Gamma distributions and Markov renewal pro-
full-length movie produce frames of different sizes, becausesses, we have proposed two models for generation of synthetic
of composition or content of picture and temporal similarity BR videos. These, being frame-size models, generate sizes of
of adjacent pictures. A universal VBR video model must havueB, and P frames. Thus, one can study types of frames being
enough parameters to capture all classes of video segmeaffgcted during communication.
and all three frame types (I, B, and P) in each class of videoWe have used QQ plots to show visual similarity of model-
segments. generated VBR video data sets with original data set. Similarity
In this paper, we have presented algorithms for analysis @flocal burstiness of model-generated VBR videos and original
full-length VBR videos. After two-pass analysis of a VBRvideo have been validated using leaky-bucket simulation tech-
video, our algorithms identify and partition (size-based) classegjue. Full-length videos generated by both models preserved
of video shots. Frames in each class produce three data detsal burstiness of original video. Our study of frame-based
one each for I-, B-, and P-type frames. Each of these data SéBR video revealed that even a low data-loss rate could affect
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Fig. 20. Affected frames versus buffer capacity in Models A and B. Drain rate
= 4.5 (ET).

a large fraction of | frames causing a significant degradation
the quality of transmitted video.

In summary, we provide not only two good models for ge
eration of synthetic VBR video for study of B-ISDN, but also
tool for understanding of the quality of transmitted video whe
communication is subject to data loss. We are now analyzi
more full-length videos for modeling them. Once a good number
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